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Problem 1: Code Extension

Suppose |U| ≥ 2 . For n ≥ 1 and a code c : U → {0, 1}∗ we define its n -extension cn : Un → {0, 1}∗ via
cn(un) = c(u1) . . . c(un) . In other words cn(un) is the concatenation of the binary strings c(u1) , . . . ,
c(un) . A code c is said to be uniquely decodeable if for any uk and ũm with uk 6= ũm , ck(uk) 6= cm(ũm) .

(a) Show that if c is uniquely decodable, then for all n ≥ 1 , cn is injective.

(b) Show that if c is not uniquely decodable, there are uk and ũm with u1 6= ũ1 and ck(uk) = cm(ũm) .

(c) Show that if c is not uniquely decodable, then there is an n for which cn is not injective. [Hint:
try n = k +m .]

Problem 2: Elias coding

Let 0n denote a sequence of n zeros. Consider the code (the subscript U a mnemonic for ‘Unary’),
CU : {1, 2, . . . } → {0, 1}∗ for the positive integers defined as CU (n) = 0n−1 .

(a) Is CU injective? Is it prefix-free?

Consider the code (the subscript B a mnenonic for ‘Binary’), CB : {1, 2, . . . } → {0, 1}∗ where CB(n) is
the binary expansion of n . I.e., CB(1) = 1 , CB(2) = 10 , CB(3) = 11 , CB(4) = 100 , . . . . Note that

length CB(n) = dlog2(n+ 1)e = 1 + blog2 nc.

(b) Is CB injective? Is it prefix-free?

With k(n) = length CB(n) , define C0(n) = CU (k(n))CB(n) .

(c) Show that C0 is a prefix-free code for the positive integers. To do so, you may find it eas-
ier to describe how you would recover n1, n2, . . . from the concatenation of their codewords
C0(n1)C0(n2) . . . .

(d) What is length(C0(n)) ?

Now consider C1(n) = C0(k(n))CB(n) .

(e) Show that C1 is a prefix-free code for the positive integers, and show that length(C1(n)) = 2 +
2blog(1 + blog nc)c+ blog nc ≤ 2 + 2 log(1 + log n) + log n .
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Suppose U is a random variable taking values in the positive integers with Pr(U = 1) ≥ Pr(U = 2) ≥ . . . .

(f) Show that E[logU ] ≤ H(U) , [Hint: first show iPr(U = i) ≤ 1 ], and conclude that

E[length C1(U)] ≤ H(U) + 2 log(1 +H(U)) + 2.

Problem 3: Lower bound on Expected Length

Suppose U is a random variable taking values in {1, 2, . . . } . Set L = blog2 Uc . (I.e., L = j if and only
if 2j ≤ U < 2j+1 ; j = 0, 1, 2, . . . .

(a) Show that H(U |L = j) ≤ j , j = 0, 1, . . . .

(b) Show that H(U |L) ≤ E[L] .

(c) Show that H(U) ≤ E[L] +H(L) .

(d) Suppose that Pr(U = 1) ≥ Pr(U = 2) ≥ . . . . Show that 1 ≥ iPr(U = i) .

(e) With U as in (d), and using the result of (d), show that E[log2 U ] ≤ H(U) and conclude that
E[L] ≤ H(U) .

(f) Suppose that N is a random variable taking values in {0, 1, . . . } with distribution pN and E[N ] =
µ . Let G be a geometric random variable with mean µ , i.e., pG(n) = µn/(1 + µ)1+n , n ≥ 0 .

Show that H(G) − H(N) = D(pN‖pG) , and conclude that H(N) ≤ g(µ) with g(x) = (1 +
x) log2(1 + x)− x log2 x .

[Hint: Let f(n, µ) = − log2 pG(n) = (n+ 1) log2(1 + µ)− n log2(µ) . First show that E[f(G,µ)] =
E[f(N,µ)] , and consequently H(G) =

∑
n pN (n) log2(1/pG(n)) .]

(g) Show that for U as in (d) and g(x) as in (f),

E[L] ≥ H(U)− g(H(U)).

[Hint: combine (f), (e), (c).]

(h) Now suppose U is a random variable taking values on an alphabet U , and c : U → {0, 1}∗ is an
injective code. Show that

E[length c(U)] ≥ H(U)− g(H(U)).

[Hint: the best injective code will label U = {a1, a2, a3, . . . } so that Pr(U = a1) ≥ Pr(U = a2) ≥
. . . , and assign the binary sequences λ, 0, 1, 00, 01, 10, 11, ... to the letters a1, a2, . . . in that order.
Now observe that the i ’th binary sequence in the list λ, 0, 1, 00, 01, . . . is of length blog2 ic .]
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Problem 4: Dependence and large error events

In the lecture notes we have seen how to bound the expected generalization error using information
measures. With this exercise we will work on large error events and provide bounds on the probabilities
of such events. The setting is the same: we observe n iid samples D = (X1, . . . , Xn) (according to
some unknown distribution P ) and based on this observation we will choose a hypothesis w ∈ W . We
also consider the usual definition of empirical and population risk, i.e. given a loss function ` , some
hypothesis w , LD(w) = 1

n

∑n
i=1 `(w,Xi) , and LP (w) = EP [`(w,X)] . We are interested in controlling

the following quantity:
Pr (|LP (W )− LD(W )| > ε) . (1)

(a) Suppose that the loss is such that `(w, x) ∈ {0, 1} for every w ∈W and x ∈ X . Suppose also that
|W| <∞ , i.e., the number of hypotheses is finite.

1. Show that for every fixed w ∈W Pr (|LP (w)− LD(w)| > ε) ≤ 2 exp(−2nε2);

2. Show that
Pr (|LP (W )− LD(W )| > ε) ≤ |W | · 2 exp(−2nε2); (2)

Hint: denote with E = {(d,w) : |LP (w)− Ld(w)| > ε}.
You have that Pr (|LP (W )− LD(W )| > ε) = Pr(E) =

∑
(w,d)∈E P (w, d) .

(be careful: Pr (|LP (W )− LD(W )| > ε|W = w) is not necessarily ≤ 2 exp(−2nε2).Why? )

(b) Now consider the following information measure, given two discrete random variables X,Y :

L(X → Y ) = log
∑
y

max
x:PX(x)>0

PY |X(y|x). (3)

This quantity is known in the literature as Maximal Leakage and quantifies the leakage of informa-
tion between X and Y .

1. Show that if the alphabet of Y (denoted with Y ) is finite then

L(X → Y ) ≤ log |Y|,

which distributions achieve the bound with equality?

2. It is possible to show that
L(X → Y ) ≥ 0,

which distributions achieve the bound with equality?

3. Let X be a binary random variable and let Y be an observation of X after passing through
a Binary Symmetric Channel with parameter δ . More precisely we have PY |X=x(x) = 1− δ,
for x ∈ {0, 1} .

What is the maximal leakage L(X → Y ) ?

Which values of δ allow you to achieve the bounds in (1), (2) with equality?

4. Suppose further that the space of samples D is finite. Denote with Ew = {d : (d,w) ∈ E} ,
for w ∈ W ; Show that:

Pr (|LP (W )− LD(W )| > ε) ≤ exp(L(D →W )) max
w∈W

Pr(Ew);

5. Conclude that

Pr (|LP (W )− LD(W )| > ε) ≤ 2 exp(L(D →W )− 2nε2);

6. Compare the two bound retrieved in (a2) and (b4), what do you notice? Is one of the two
better than the other? When are they equal? What conclusions can you draw?
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Problem 5: Tighter Generalization Bound

[10pts] Let D = X1, ..., Xn iid from an unknown distribution PX , let H be a hypothesis space, and
` : H × X → R be a σ2− subgaussian loss function for every h . In the lecture we have seen that the
generalization error can be upper bounded using the mutual information.

|EPDH
[LPX

(H)− LD(H)] | ≤
√

2σ2I(D;H)

n

(i) [4 pts] Modify the proof of the Mutual Information Bound (11.2.2) to show that if for all h ∈ H ,
`(h,X) is σ2− subgaussian in X , then

|EPDH
[LPX

(H)− LD(H)] | ≤
√

2σ2
∑n

i=1 I(Xi;H)

n
.

Hint: Recall from the lecture notes that

|EPDH
[LPX

(H)− LD(H)]| ≤ 1

n

n∑
i=1

∣∣EPXiH
[`(H,Xi)]− EPXi

PH
[`(H,Xi)]

∣∣ .
(ii) [3 pts] Show that, this new bound is never worse than the previous bound by showing that,

I(D;H) ≥
n∑

i=1

I(Xi;H).

(iii) [3 pts] Let us consider an example. Assume that D = X1, .., Xn, n > 1, are i.i.d. from N (θ, 1) ,
and that we do not know θ . We want to learn θ assuming the loss `(h, x) = min(1, (h − x)2)
(which is bounded) and H = R . Our learning algorithm outputs H = 1

n

∑n
i=1Xi . Use the new

bound to show that

|EPDH
[LPX

(H)− LD(H)] | ≤

√
1

4(n− 1)
.

How does the old bound perform in this example?
Hint: Adding independent gaussian random variables, you get a gaussian random variable.
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