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School of Computer and Communication Sciences

Foundations of Data Science Assignment date: Thursday, November 16th, 2023, 17:15

Fall 2023 Due date: Thursday, November 16th, 2023, 19:00

Midterm Exam – INF2

This exam is open book. No electronic devices of any kind are allowed. There are four

problems. Good luck!

Only answers given on this handout count.

Name:

Problem 1 / 7

Problem 2 / 8

Problem 3 / 10

Problem 4 / 10

Total /35



Problem 1. (Sum of binomials)[7 pts]

You have seen in Homework 2 that the entropy function is related to the asymptotic value

of the binomial coefficient:

log2

(
n

np

)
= nh(p) +O(log2 n),

for n ≥ 1 and 0 ≤ p ≤ 1, where h(p) , −p log2 p− (1− p) log2(1− p) is the binary entropy

function. We want to derive a similar bound for the sum of binomial coefficients.

(a) [3 pts] Fix 0 ≤ p ≤ 1/2 and let C be the set of all subsets of {1, 2, . . . , n} of size at

most np. Let X be a random variable uniformly distributed over C. Show that

H(X) ≤ nh(p).

Hint: Let (X1, X2, . . . , Xn) be a random vector such that for every i, Xi = 1 if i ∈ X,

and Xi = 0 otherwise. Argue that H(X) = H(X1, X2, . . . , Xn).

(b) [1 pts] Using part (a), conclude that

bnpc∑
i=0

(
n

i

)
≤ 2nh(p).

(c) [3 pts] Using part (b), show that if Z ∼ Binomial(n, p = 1
2
), then

Pr
(∣∣∣Z − n

2

∣∣∣ ≥ cσ
)
≤ 21−c2/2

for every c ≥ 0, where σ =
√
n
2

is the standard deviation of Z.

Hint: you can use (without proving it) the bound h(p) ≤ 1− 2
(
1
2
− p
)2

.
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Solution 1. (a) There is a one-to-one correspondence between X and (X1, X2, . . . , Xn):

from the value of X we can uniquely determine the value of (X1, X2, . . . , Xn), and

viceversa. Hence, H(X) = H(X1, X2, . . . , Xn). Then,

H(X) = H(X1, X2, . . . , Xn) ≤
n∑

i=1

H(Xi) = nH(X1)

where the last equality is due to symmetry. Now, Pr(X1 = 1) ≤ p ≤ 1
2
, and therefore

H(X1) ≤ h(p). Hence, H(X) ≤ nh(p).

(b)

H(X) = log|C| = log

bnpc∑
i=0

(
n

i

)
≤ nh(p).

Hence,
bnpc∑
i=0

(
n

i

)
≤ 2nh(p).

(c)

Pr

(∣∣∣Z − n

2

∣∣∣ ≥ c

√
n

2

)
= 2

(
1

2

)n

⌊
n
(

1
2
− c

2
√
n

)⌋∑
i=0

(
n

i

)
≤ 2

nh
(

1
2
− c

2
√
n

)
−n+1

≤ 2
n
(
1− c2

2n

)
−n+1

= 21−c2/2.
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Problem 2. (Geometrical interpretation of mutual information)[8 pts]

In Homework 2 we introduced the conditional KL divergence between two probability kernels

PY |X : X → Y and QY |X : X → Y given a distribution PX over X as

D(PY |X‖QY |X |PX) ,
∑
x∈X

PX(x)D(PY |X(·|x)‖QY |X(·|x)),

where for every x ∈ X , D(PY |X(·|x)‖QY |X(·|x)) is the standard KL divergence between the

two distributions PY |X(·|x) and QY |X(·|x) over Y .

(a) [2 pts] Let X and Y be two random variables with joint distribution PXY = PXPY |X .

Show that

I(X;Y ) =
∑
x∈X

PX(x)D(PY |X(·|x)‖PY )

, where PY is the marginal distribution of Y . This formula shows that the mutual

information can be interpreted as a weighted average of the distances between the

conditional distributions PY |X(·|x) and the marginal distribution PY .

(b) [3 pts] Show that for any distribution QY on Y ,

I(X;Y ) = D(PY |X‖QY |PX)−D(PY ‖QY ).

You can think of this formula as a KL equivalent of the classical I(X;Y ) = H(Y ) −
H(Y |X).

(c) [3 pts] Show that

I(X;Y ) = min
QY

D(PY |X‖QY |PX).

According to this formula, the minimizing QY can be interpreted as the “center of

gravity” of the conditional distributions PY |X(·|x), and the mutual information as its

radius.

4



Solution 2. All the results can be proved working directly with the definitions of KL di-

vergence and mutual information. The following is a simple solution that makes use of the

results proved in Homework 2, Problem 3.

(a)

I(X;Y ) = D(PXPY |X‖PXPY ) = D(PY |X‖PY |PX) =
∑
x∈X

PX(x)D(PY |X(·|x)‖PY ),

where the second inequality is due to Homework 2, Problem 3(b).

(b)

D(PY ‖QY ) + I(X;Y ) = D(PY ‖QY ) +D(PX|Y ‖PX |PY )

= D(PXY ‖PXQY )

= D(PY |X‖QY |PX)

where the first inequality is due to part (a) by exchanging the roles of X and Y , the

second equality is due to the chain rule of the KL divergence (Homework 2, Problem

3(a)), and the third inequality is again due to Homework 2, Problem 3(b).

(c) By part (b) we know that I(X;Y ) ≤ D(PY |X‖QY |PX) for everyQY , sinceD(PY ‖QY ) ≥
0. Hence, I(X;Y ) ≤ minQY

D(PY |X‖QY |PX). The equality is achieved by picking

QY = PY , for which D(PY |X‖QY |PX) = D(PY |X‖PY |PX) = I(X;Y ).
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Problem 3. (Lipschitz Bandits)[10 pts]

Assume for the following that you have a bandit algorithm at your disposal that has an

expected regret, call it Rn, bounded by c
√
Kn log(n), where K is the number of arms and

n is the time horizon.

You have to design an algorithm for the following scenario. There are infinitely many bandits.

More precisely the bandits are indexed by x, x ∈ [0, 1]. Bandit x has mean µ(x) (which is

unknown). But you do know that the various bandits are related in the sense that

|µ(x)− µ(y)| ≤ L|x− y|, (1)

where L is a known constant. This is known as the Lipschitz bandit problem due to the

Lipschitz condition (1).

A natural approach to such a bandit problem is to discretize the space of bandits. I.e.,

assume that you pick K positions 0 ≤ x1 < x2 < · · · < xK ≤ 1 and run your given bandit

problem on these K bandits.

a) [5 pts] Bound the expected regret as a function of K, n, L and the placement of points.

b) [5 pts] For n and L fixed, minimize your expression with respect to K and the placement

of points.

HINT: In order to simplify your computation, you might want to slightly loosen your bound.
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Solution 3.

a) [5 pts] Let x∗ be the position of the arm with highest reward and let µ∗ = µ(x∗). Let

i∗ be the discrete arm that is closest to x∗. Then by the Lipschitz condition

µ∗ ≤ µi∗ + L|xi∗ − x∗|
≤ max

i
µi + L|xi∗ − x∗|

≤ max
i
µi +

1

2
L max

i=1,··· ,K−1
|xi+1 − xi|.

Hence

Rn = µ∗n−E[
n∑

t=1

Xt]

= (µ∗ −max
i
µi)n+ max

i
µin−E[

n∑
t=1

Xt]

≤ 1

2
nLmaxi=1,··· ,K−1|xi+1 − xi|+

√
Kn log(n).

b) [5 pts] We get the tightest bound for maxi=1,··· ,K−1|xi+1 − xi| if we pick the posi-

tions uniform. This will give us 1/(K + 1). However, to simplify the minimiza-

tion, let us upper bound this by 1/K. Hence, we have to take the derivative of

c
√
Kn log(n) + 1

2
L/K wrt to K and then set the result to 0 and solve for K. We

get −((L− cK
√
Kn log(n))/(2K2)) = 0 which gives us (ignoring integer constraints)

K = L(2/3)n(1/3)
/(c(2/3)n(1/3) log(n)(1/3)). If we plug this back into the expression we

arrive at 3/2c(2/3)L(1/3)n(2/3) log(n)(1/3).
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Problem 4. (Frames: Reconstruction Algorithm)[10 pts]

Frames generalize the notion of orthonormal bases and have important applications in com-

pression, noise reduction, frequency analysis, etc. Formally, a frame is defined as a set of

vectors V = {vi}mi=1 in an n-dimensional complex vector space such that there exist constants

0 < A ≤ B <∞ such that for all vectors x,

A‖x‖22 ≤
m∑
k=1

|〈x, vk〉|2 ≤ B‖x‖22. (2)

We refer to the numbers {〈x, vk〉}mi=1 as frame coefficients. Note that frames include or-

thonormal bases as the special case where A = B = 1.

Let us define the synthesis operator S associated with a frame V via the following linear

mapping:

Sx =
m∑
k=1

〈x, vk〉vk. (3)

Now imagine that you are given only the frame coefficients (and of course the frame itself)

and want to reconstruct the original signal x therefrom. In contrast to the synthesis step for

orthonormal bases, it generally does not hold that x = Sx if V is a frame, hence one needs

to come up with a dedicated reconstrution algorithm.

One of the simplest such algorithms is the following:

Inputs: Sx, {vi}mi=1, A,B

Initialize: x0 ← 0

For k = 1, . . . , N :

xk ← xk−1 + 2
A+B

S(x− xk−1)

Output: xN

a) [2 pts] Show that for the spectral norm of self adjoint matrices U (i.e., matrices such

that UH = U), it holds that ‖U‖ = sup‖x‖2=1 |〈x, Ux〉|.

Hint 1: the min-max Theorem states that for the spectrum λ1 ≥ λ2 ≥ · · · ≥ λn of n×n
Hermitian matrices A ∈ Rn×n it holds that λk = minW max‖x‖2=1{〈x,Ax〉 | dim(W ) =

n− k + 1}, where W are linear subspaces of Rn.

Hint 2: start by using the min-max Theorem to control the spectrum of ‖U‖2.

Whenver you use the min-max Theorem, be explicit about how you apply

it!

b) [2 pts] Show that 〈(I − 2
A+B

S)x, x〉 ≤ B−A
B+A
‖x‖22.

c) [2 pts] Similarly, show that 〈(I − 2
A+B

S)x, x〉 ≥ −B−A
B+A
‖x‖22 and show that this implies

that ‖I − 2
A+B

S‖ ≤ B−A
B+A

.
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d) [1 pts] Show that it holds

x− xk =

(
I − 2

A+B
S

)
(x− xk−1). (4)

e) [3 pts] Derive an upper bound on the reconstruction error ‖x−xN‖2 in terms of A,B,N

and ‖x‖2 that decays geometrically in N .

Which kind of frames allow for to the most efficient signal reconstrution in terms of

required iterations of the above algorithm?
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Solution 4.

a) Denote byQHDQ the spectral decomposition of U . Then, ‖U‖2 = max‖x‖2=1 x
HUHUx =

max‖x‖=1(Qx)HD2(Qx) = (λ∗)2 where λ∗ denotes the eigenvalue of U with maximum

modulus. This implies that ‖U‖ = |λ∗|, where |λ∗| can be found to be max‖x‖=1 |〈x, Ux〉|
by combining the min-max Theorem variational descriptions of λ1 for U and −U , re-

spectively.

b) Using a), it follows that

〈(I − 2

A+B
S)x, x〉 = ‖x‖22 −

2

A+B

m∑
k=1

|〈x, vk〉|2, ∀x

this implies together with the frame condition that

〈(I − 2

A+B
S)x, x〉 ≤ ‖x‖22 −

2A

A+B
‖x‖22 =

B − A
B + A

‖x‖22

.

c) A calculation analogous to b) shows that

〈(I − 2

A+B
S)x, x〉 ≥ −B − A

B + A
‖x‖22

. Combining this with a) and b) gives the desired result.

d)

x− xk = x− xk−1 −
2

A+B
S(x− xk−1) (5)

=

(
I − 2

A+B
S

)
(x− xk−1) (6)

e) Repeating the step in d) N times, we obtain

x− xk =

(
I − 2

A+B
S

)N

(x− x0).

Using c) together with sub-multiplicativity of the operator norm yields

‖x− xk‖2 = ‖
(
I − 2

A+B
S

)N

(x− x0)‖2 (7)

≤ ‖I − 2

A+B
S‖N‖x− x0‖2 ≤

(
B − A
B + A

)N

‖x‖2. (8)

We can perfectly reconstruct x with just a single iteration of the above algorithm for

tight frames, i.e., frames with A = B.
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