Homework 9

Exercise 1. [Barker's algorithm]

Let $\pi=\left(\pi_{i}, i \in S\right)$ be a distribution on a finite state space S such that $\pi_{i}>0$ for all $i \in S$ and let us consider the base chain with transition probabilities $\psi_{i j}$, which is assumed to be irreducible, aperiodic and such that $\psi_{i j}>0$ if and only if $\psi_{j i}>0$. Define the following acceptance probabilities:

$$
a_{i j}=\frac{\pi_{j} \psi_{j i}}{\pi_{i} \psi_{i j}+\pi_{j} \psi_{j i}}
$$

as well as a new chain with transition probabilities $p_{i j}=\psi_{i j} a_{i j}$ if $j \neq i$. Show that this new chain is ergodic and that it satisfies the detailed balance equation:

$$
\pi_{i} p_{i j}=\pi_{j} p_{j i}, \quad \forall i, j \in S
$$

Exercise 2. Let π be a probability distribution $S=\mathbb{N}^{*}=\{1,2,3, \ldots\}$. We assume that $\pi_{i}>0$ for every $i \in S$ and moreover that $\pi_{i} \geq \pi_{i+1}$ for every $i \in S$. In order to sample from π, let us consider the base chain with transition probabilities:

$$
\psi_{1,2}=1, \quad \psi_{i, i \pm 1}=\frac{1}{2}, \quad \text { for } i \geq 2
$$

and $\psi_{i j}=0$ for all other values of i, j ($N B$: Does this chain satisfy the required assumptions?).
a) Compute the general expression for the acceptance probabilities $a_{i j}$ and the transition probabilities $p_{i j}$ of the corresponding Metropolis chain.
b) Consider then the following three particular cases (where the constants C_{1}, C_{2}, C_{3} are appropriate normalization constants):

1. $\pi_{i}=C_{1} / i^{2}, i \geq 1$
2. $\pi_{i}=C_{2} \exp (-i), i \geq 1$
3. $\pi_{i}=C_{3} \exp \left(-i^{2}\right), i \geq 1$

In each case, compute the acceptance probabilities $a_{i j}$, as well as the limit $\lim _{i \rightarrow \infty} a_{i, i+1}$.

Exercise 3. Let $n \geq 1,0<p<1$, and consider the binomial distribution on $S=\{0,1, \ldots, n\}$ defined as

$$
\pi_{k}=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad \text { for } k \in S
$$

Construct a base chain on S, as well as the corresponding Metropolis chain whose stationary and limiting distribution is π (simplifying as much as you can the expression for the acceptance probabilities).

Exercise 4. [Metropolized independent sampling in a particular case]
Let $0<\theta<1$ and let us consider the following distribution π on $S=\{1, \ldots, N\}$:

$$
\pi_{i}=\frac{1}{Z} \theta^{i-1}, \quad i=1, \ldots, N
$$

where Z is the normalization constant, whose computation is left to the reader.
a) Consider the base chain $\psi_{i j}=\frac{1}{N}$ for all $i, j \in S$ and derive the transition probabilities $p_{i j}$ obtained with the Metropolis-Hastings algorithm.
b) Using the result of the course, derive an upper bound on $\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}}$. Compare the bounds obtained for $i=1$ and $i=N$ (for large values of N).
c) Deduce an upper bound on the (order of magnitude of the) mixing time

$$
T_{\varepsilon}=\inf \left\{n \geq 1: \max _{i \in S}\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}} \leq \varepsilon\right\}
$$

