Homework 9

Exercise 1. [Barker's algorithm]

Let $\pi = (\pi_i, i \in S)$ be a distribution on a finite state space S such that $\pi_i > 0$ for all $i \in S$ and let us consider the base chain with transition probabilities ψ_{ij} , which is assumed to be irreducible, aperiodic and such that $\psi_{ij} > 0$ if and only if $\psi_{ji} > 0$. Define the following acceptance probabilities:

$$a_{ij} = \frac{\pi_j \, \psi_{ji}}{\pi_i \, \psi_{ij} + \pi_j \, \psi_{ji}}$$

as well as a new chain with transition probabilities $p_{ij} = \psi_{ij} a_{ij}$ if $j \neq i$. Show that this new chain is ergodic and that it satisfies the detailed balance equation:

$$\pi_i p_{ij} = \pi_i p_{ji}, \quad \forall i, j \in S$$

Exercise 2. Let π be a probability distribution $S = \mathbb{N}^* = \{1, 2, 3, \ldots\}$. We assume that $\pi_i > 0$ for every $i \in S$ and moreover that $\pi_i \geq \pi_{i+1}$ for every $i \in S$. In order to sample from π , let us consider the base chain with transition probabilities:

$$\psi_{1,2} = 1$$
, $\psi_{i,i\pm 1} = \frac{1}{2}$, for $i \ge 2$

and $\psi_{ij} = 0$ for all other values of i, j (NB: Does this chain satisfy the required assumptions?).

- a) Compute the general expression for the acceptance probabilities a_{ij} and the transition probabilities p_{ij} of the corresponding Metropolis chain.
- b) Consider then the following three particular cases (where the constants C_1, C_2, C_3 are appropriate normalization constants):
- 1. $\pi_i = C_1/i^2, i \geq 1$
- 2. $\pi_i = C_2 \exp(-i), i \ge 1$
- 3. $\pi_i = C_3 \exp(-i^2), i > 1$

In each case, compute the acceptance probabilities a_{ij} , as well as the limit $\lim_{i\to\infty} a_{i,i+1}$.

Exercise 3. Let $n \ge 1$, $0 , and consider the binomial distribution on <math>S = \{0, 1, \dots, n\}$ defined as

$$\pi_k = \binom{n}{k} p^k (1-p)^{n-k}, \text{ for } k \in S$$

Construct a base chain on S, as well as the corresponding Metropolis chain whose stationary and limiting distribution is π (simplifying as much as you can the expression for the acceptance probabilities).

Exercise 4. [Metropolized independent sampling in a particular case]

Let $0 < \theta < 1$ and let us consider the following distribution π on $S = \{1, ..., N\}$:

$$\pi_i = \frac{1}{Z} \, \theta^{i-1}, \quad i = 1, \dots, N$$

where Z is the normalization constant, whose computation is left to the reader.

- a) Consider the base chain $\psi_{ij} = \frac{1}{N}$ for all $i, j \in S$ and derive the transition probabilities p_{ij} obtained with the Metropolis-Hastings algorithm.
- b) Using the result of the course, derive an upper bound on $||P_i^n \pi||_{\text{TV}}$. Compare the bounds obtained for i = 1 and i = N (for large values of N).
- c) Deduce an upper bound on the (order of magnitude of the) mixing time

$$T_{\varepsilon} = \inf\{n \ge 1 : \max_{i \in S} \|P_i^n - \pi\|_{\mathrm{TV}} \le \varepsilon\}$$