Markov Chains and Algorithmic Applications - IC - EPFL

Solutions 11

1. a) The posterior distribution is from Bayes rule,

$$
\begin{aligned}
p\left(\theta \mid y_{1}, \ldots, y_{N}\right) & =\frac{\mathbb{P}\left(y_{1}, \ldots, y_{N} \mid \theta\right) p_{0}(\theta)}{\int_{\mathbb{R}} d \theta \mathbb{P}\left(y_{1}, \ldots, y_{N} \mid \theta\right) p_{0}(\theta)} \\
& =\frac{p_{0}(\theta) \prod_{i=1}^{N} q\left(y_{i} \mid \theta\right)}{\int_{\mathbb{R}} d \theta p_{0}(\theta) \prod_{i=1}^{N} q\left(y_{i} \mid \theta\right)}
\end{aligned}
$$

The base (or proposal) chain has probabilities $\psi_{\theta^{t \rightarrow \theta^{t+1}}}=p_{0}\left(\theta^{t+1}\right)$ thus

$$
\begin{aligned}
\frac{p\left(\theta^{t+1} \mid y_{1}, \ldots, y_{N}\right) \psi_{\theta^{t+1} \rightarrow \theta^{t}}}{p\left(\theta^{t} \mid y_{1}, \ldots, y_{N}\right) \psi_{\theta^{t} \rightarrow \theta^{t+1}}} & =\frac{p\left(\theta^{t+1} \mid y_{1}, \ldots, y_{N}\right) p_{0}\left(\theta^{t}\right)}{p\left(\theta^{t} \mid y_{1}, \ldots, y_{N}\right) p_{0}\left(\theta^{t+1}\right)} \\
& =\frac{\prod_{i=1}^{N} q\left(y_{i} \mid \theta^{t+1}\right)}{\prod_{i=1}^{N} q\left(y_{i} \mid \theta^{t}\right)}
\end{aligned}
$$

So the acceptance probabilities are simply:

$$
A_{\theta^{t} \rightarrow \theta^{t+1}}=\min \left\{1, \frac{\prod_{i=1}^{N} q\left(y_{i} \mid \theta^{t+1}\right)}{\prod_{i=1}^{N} q\left(y_{i} \mid \theta^{t}\right)}\right\}
$$

b) Although the acceptance probabilities do not use the prior we still need to sample from the prior to propose a move. However this is in principle much simple than sampling directly from the posterior (whose formula is above).

