Markov Chains and Algorithmic Applications - IC - EPFL

Homework 11

Exercise 1. [Sampling from a posterior]
Assume you are given some "data points" y_{1}, \ldots, y_{N} which are known to be i.i.d samples of $q(y \mid \theta)$ where $\theta \in \mathbb{R}$ is a random parameter with (continuous) prior $p_{0}(\theta)$.

We want to sample θ from the posterior distribution $p\left(\theta \mid y_{1}, \cdots, y_{N}\right)$. We decide to construct a MH Markov chain $\theta^{0}, \theta^{1}, \theta^{2}, \ldots, \theta^{t}, \theta^{t+1}, \ldots$ where the proposal move consists of the transition $\theta^{t} \rightarrow \theta^{t+1}$ with probability $p_{0}\left(\theta^{t+1}\right)$.
a) Formulate the MH algorithm and in particular give a simple formula for the acceptance probabilities that does not involve the prior and/or any potentially difficult to compute integral.
b) Is it true that you do not need to know this prior in order to run the chain ? What is the advantage of MH here w.r.t directly sampling the posterior ?

