Markov Chains and Algorithmic Applications: WEEK 11

1 Application: Graph coloring

Let G = (V, E) be a graph with vertex set V (|[V| = N) and edge set E. We want to color each vertex
of the graph with one of the ¢ colors at our disposal such that a vertex’s color differs from that of all its
neighbors, as seen below:

More formally, let S be the set of all possible color configurations on G and z = (x,, v € V) € S a
particular color configuration. A proper g-coloring of G is any configuration x such that Vv, w € V, if
(v,w) € E then x, # xy.

Our aim: to sample uniformly amongst the proper g-colorings of G. In other words, we want to sample
from the distribution
7T(l‘) _ ]]-{:r is a proper q—colorilllg} = S
Z = { proper g-colorings

Remark 1.1. Let A = max,cy deg(v). If ¢ > A + 1, then there exists at least one proper g-coloring.

In what follows, we are going to restrict our analysis to graphs satisfying ¢ > 3A.

One way to sample from 7 is by using the following algorithm:

1. Start from a proper g-coloring x € S.

2. Select a vertex v € V uniformly at random.

3. Select a color ¢ € {1,...,¢} uniformly at random.

4. If ¢ is an allowed color at v, then recolor v (i.e. set x, = ¢); do nothing otherwise.
5. Repeat steps 2, 3 and 4.

Remark 1.2. Since the algorithm started from a proper g-coloring = € S, every visited state is also a
proper g-coloring.

Remark 1.3. The algorithm could also be used to find a proper g-coloring on G. Indeed, if we start the
algorithm in a state ' € S that is not a proper coloring, the algorithm ensures that eventually a proper
coloring will be reached.

Definition 1.4. Let z,y € S be two color configurations. We write = ~ y if x and y differ in at most
one vertex.

Remark 1.5. The algorithm is actually an instance of the Metropolis-Hastings algorithm:

N U~y Fa,
;Y=
0 otherwise.

1 is aperiodic (due to self-loops) and satisfies 15, > 0 iff ¥y, > 0 (due to symmetry). Moreover,
the condition ¢ > 3A ensures that 1 is irreducible.

1. Let the base chain be 1, =



. Ty \ s 1{y is a proper g-coloring}/Z \ __
2. gy = 1MIN (17 E) = min (17 1z - ]l{y is a proper g-coloring}-

(NB: we already know that x is a proper g-coloring).

3.
Doy = 7/}zyamy y#z,
o 1- ZzeS\m YezQzz Y=7T
Niq]l{y is a proper g-coloring} y~x,y 7é z,
_ 1 : _
=q1- N—qﬁ{z ~x, z # x, z proper g-coloring} y =,
0 otherwise.

1.1 Convergence rate analysis

The mizing time of this chain is T, = inf {n > 1 : max, proper g-coloring|| Py — 7||Tv < €}.
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Theorem 1.6. If ¢ > 3A, then for all proper g-colorings z, ||P} — 7||rv < Ne~#(1-% ), implying that

1 1
q

Proof. Let (X,,n > 0) be a Markov chain on S starting at Xy = x (a proper g-coloring) and evolving
according to P. Let (Y,,,n > 0) be a Markov chain on S starting at Yy ~ 7 and also evolving according
to P.

We will couple X and Y as follows:

1. Select a vertex v € V uniformly at random.
2. Select a color ¢ € {1,..., ¢} uniformly at random.

3. Update X at vertex v if ¢ is an allowed color.
Update Y at vertex v if ¢ is an allowed color.

Definition 1.7. The Hamming distance between two colorings x and y is the number of positions in
which = and y disagree:

d(x,y) =D Lz, 2y,

veV
By a coupling argument seen in previous lectures, we have
[1PF = 7llry SP(Xp #Yn) =P (d(Xn,Yn) 2 1) SE(d(Xn,Yn)),

where the last inequality is obtained by using the Markov inequality.
All that is left to do now is to upper bound E (d (X,,Y},)). We will do so using two inductions:

1. Assume first that d (X, Yp) = 1, i.e. X and Y} differ at one vertex only, and let v be that vertex.
Due to the coupling, at most one vertex can change color per transition, hence d (X1,Y7) € {0, 1,2}
and

E(d(X,Y1))=0-P(d(X1,Y1)=0)+1-P(d(X1,Y1)=1)4+2-P(d(X1,Y1) =2)
= (1 -P(d(X1,Y1) =0)) +P(d(X1,Y1) = 2)



d(X1,Y1) = 0 if and only if vertex v is chosen (with probability %) and that the color ¢ chosen is
allowed in both chains X and Y, hence
1 # allowed colors at v 1 ¢g—A

= = — >
P(d(X1,Y1) =0) N . ZN 7

d(X1,Y1) = 2 if and only if the vertex w chosen is a neighbor of v (because p;; = 0 when i ¢ j)
and that either X or Y is recolored (but not both). The latter only happens when the chosen color
¢ satisfies ¢ = x, or ¢ = y,, so we have

A 2
Pd(X,Y1)=2)< — -
(X1 ¥) =2 < 5=
Gathering both estimates together, we obtain
1g—A\ A2 1 3A
Ed(X,1)<(1l-—=—"—7 i1 —(1-
(@ (X, 1))—< N q>+Nq N( q>

2. Suppose now that d(Xo,Yy) = r. Since P describes an irreducible Markov chain, there exists a
sequence of r — 1 states Zél), ceey Z(()Tfl) such that

PxozOP 20 70 -+ Pyir-Dy, > 0,
a(X0,2") = (2, 20) = =a (2 V%) =1
This implies that

E(d(X1,11) <E(d(X0,2)) +E (a (27, 2()) +--+ B (d (27, 71))

3. This inequality is valid between times 0 and 1, but it also holds between times n and n + 1:

o ) =0 < (1 1 (1 2))

From the above, we deduce that

E(d(Xnt1,Yn+1)) < <1 — % (1 — ?)qA>> E(d(Xn,Yn))
— a0y <2acn ) (1- 5 (1-2))
< Ne #w(1-22)
which completes the proof. O



