Markov Chains and Algorithmic Applications - IC - EPFL

Solutions 12

1. For this exercise, let $\left(U_{n}, n \geq 1\right)$ be a sequence of i.i.d. $\sim \mathcal{U}([0,1])$ random variables.

First case. $X_{0}=0, Y_{0}=1$.
a) One coupling that maximizes the chances of X and Y to meet after the first step is described as follows:

$$
\begin{cases}\text { if } 0 \leq U_{n+1} \leq \frac{1}{4} & \text { then } X_{n+1}=X_{n}+1 \text { and } Y_{n+1}=Y_{n} \\ \text { if } \frac{1}{4}<U_{n+1} \leq \frac{1}{2} & \text { then } X_{n+1}=X_{n} \text { and } Y_{n+1}=Y_{n}-1 \\ \text { if } \frac{1}{2}<U_{n+1} \leq \frac{3}{4} & \text { then } X_{n+1}=X_{n} \text { and } Y_{n+1}=Y_{n} \\ \text { if } \frac{3}{4}<U_{n+1} \leq 1 & \text { then } X_{n+1}=X_{n}-1 \text { and } Y_{n+1}=Y_{n}+1\end{cases}
$$

With this coupling, the probability that X and Y meet after one step is $\frac{1}{2}$, which can be seen to be the maximum.
b) Let ξ_{n+1} be the random variable defined as

$$
\xi_{n+1}= \begin{cases}+1 & \text { if } 0 \leq U_{n+1} \leq \frac{1}{4} \\ 0 & \text { if } \frac{1}{4}<U_{n+1} \leq \frac{3}{4} \\ -1 & \text { if } \frac{3}{4}<U_{n+1} \leq 1\end{cases}
$$

If both $X_{n+1}=X_{n}+\xi_{n+1}$ and $Y_{n+1}=Y_{n}+\xi_{n+1}$, then the two chains never meet.
But another option is also to have $X_{n+1}=X_{n}+\xi_{n+1}$ and $Y_{n+1}=Y_{n}-\xi_{n+1}$.

Variant: $X_{0}=0, Y_{0}=2$.
a) In this case, one coupling that maximizes the chances of X and Y to meet after the first step is:

$$
\begin{cases}\text { if } 0 \leq U_{n+1} \leq \frac{1}{4} & \text { then } X_{n+1}=X_{n}+1 \text { and } Y_{n+1}=Y_{n}-1 \\ \text { if } \frac{1}{4}<U_{n+1} \leq \frac{3}{4} & \text { then } X_{n+1}=X_{n} \text { and } Y_{n+1}=Y_{n} \\ \text { if } \frac{3}{4}<U_{n+1} \leq 1 & \text { then } X_{n+1}=X_{n}-1 \text { and } Y_{n+1}=Y_{n}+1\end{cases}
$$

With this coupling, the probability that X and Y meet after one step is $\frac{1}{4}$, which can be seen to be the maximum ($N B$: This coupling can also be described with the random variable ξ_{n+1} above: $X_{n+1}=X_{n}+\xi_{n+1}$ and $\left.Y_{n+1}=Y_{n}-\xi_{n+1}\right)$.
b) In this case, only the coupling $X_{n+1}=X_{n}+\xi_{n+1}$ and $Y_{n+1}=Y_{n}+\xi_{n+1}$ ensures that the walks never meet. There is no other coupling guaranteeing this property.

