Markov Chains and Algorithmic Applications - IC - EPFL

Solutions 13

1. a) The transition probabilities are given by the following formula:

$$
p(x, y)= \begin{cases}\frac{\pi\left(x_{u}^{\prime} \mid x_{1}, \cdots, x_{u-1}, x_{u+1}, \cdots, x_{d}\right)}{d}, & \text { if } y=\left(x_{1}, \cdots, x_{u-1}, x_{u}^{\prime}, x_{u+1}, \cdots, x_{d}\right) \tag{1}\\ \frac{\sum_{u=1}^{d} \pi\left(x_{u} \mid x_{1}, \cdots, x_{u-1}, x_{u+1}, \cdots, x_{d}\right)}{d}, & \text { if } y=\{1, \cdots, d\} \text { and } x_{u} \neq x_{u}^{\prime} \\ 0, & \text { otherwise. }\end{cases}
$$

b) Let us now show that the detailed balance equation is satisfied.

First note from (1) that $p(x, y)=0$ if and only if x and y differ in more than a single component. Hence, $p(x, y)=0$ if and only if $p(y, x)=0$ and the detailed balance equation is satisfied since both sides are zero.

Then, suppose that x and y differ in component u, i.e., $x=\left(x_{1}, \cdots, x_{u-1}, x_{u}, x_{u+1}, \cdots, x_{d}\right)$ and $y=\left(x_{1}, \cdots, x_{u-1}, x_{u}^{\prime}, x_{u+1}, \cdots, x_{d}\right)$. Therefore, from (1) we have

$$
\begin{aligned}
\pi(x) p(x, y) & =\frac{\pi(x) \pi\left(x_{u}^{\prime} \mid x_{1}, \cdots, x_{u-1}, x_{u+1}, \cdots, x_{d}\right)}{d}=\frac{g(x) g(y)}{Z \cdot \sum_{y_{u} \in S} g\left(x_{1}, \ldots, x_{u-1}, y_{u}, x_{u+1}, \ldots, x_{d}\right)} \\
& =\pi(y) p(y, x) .
\end{aligned}
$$

As a result, this algorithm can be viewed as a Metropolis-Hastings algorithm where the base chain has the transition probabilities $p(x, y)$ defined in (1) and the acceptance probability $a(x, y)=1$ for any $x, y \in S^{d}$. In words, every move is always accepted. Note that every base chain which satisfies the detailed balance equation induces a Metropolis Hastings algorithm in which every move is always accepted. To see this, consider the base chain $\psi_{i j}$ s.t. $\pi_{i} \psi_{i j}=\pi_{j} \psi_{j i}$ for any i, j in some state space \mathcal{S}. Then, as the base chain is not necessarily symmetric, the acceptance probability is given by

$$
a_{i j}=\min \left(1, \frac{\pi_{j} \psi_{j i}}{\pi_{i} \psi_{i j}}\right)=1
$$

