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Homework 13

Exercise 1. [Gibbs sampling or heat bath dynamics]

Let S = {1, . . . , N} and d ≥ 1. We would like to sample from a distribution π on Sd defined as

π(x) =
g(x)

Z
, x ∈ Sd,

where g is some positive function on Sd and Z =
∑

x∈Sd g(x) is the normalization constant, which
we would like to avoid computing.

A possible way to handle this problem is the following.

1. Start from a state x ∈ Sd;

2. Choose an index u ∈ {1, . . . , d} uniformly at random;

3. Update the value of xu to x′u, which is sampled from the following conditional distribution:

π(x′u|x1, . . . , xu−1, xu+1, . . . , xd) =
π(x1, . . . , xu−1, x

′
u, xu+1, . . . , xd)∑

yu∈S π(x1, . . . , xu−1, yu, xu+1, . . . , xd)

4. Repeat from 2.

What is the advantage of such a method? The above conditional probability can actually be
rewritten as

π(x′u|x1, . . . , xu−1, xu+1, . . . , xd) =
g(x1, . . . , xu−1, x

′
u, xu+1, . . . , xd)∑

yu∈S g(x1, . . . , xu−1, yu, xu+1, . . . , xd)

which only requires to compute one sum and not a multidimensional one, as required for computing
the normalization constant Z.

Your task now is to formalize slightly the above algorithm by expressing it as a Markov chain
(Xn, n ≥ 0) on Sd and

a) writing down its transition probabilities p(x, y), x, y ∈ Sd;

b) showing that the detailed balance equation is satisfied, i.e. that π(x) p(x, y) = π(y) p(y, x), for
all x, y ∈ Sd.

Can therefore this algorithm be viewed as a Metropolis-Hastings algorithm?


