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Mécanique des composites

Micro et macromécanique

CADFEM

Applications

Tests mécaniques

Endommagement et rupture

Les stratifiés

Les composites textiles

Les structures sandwich
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Propriétés: module - densité
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Propriétés des matériaux composites unidirectionnels

 METAUX COMPOSITES A MATRICE ORGANIQUE 
 Ac35NDC16 Alliage Al  Alliage Ti Bore époxy Carbone HR 

époxy 
Carbone HM 
époxy 

Verre R 
époxy 

Module de Young  E 
(MPa) 200’000 72’000 110’000 220’000 130’000 200’000 53’000 

Résistance à la 
rupture en traction 
σr (MPa) 

1850 500 1000 2000 1000 à 1300 1000 1800 à 
2000 

Masse volumique ρ 
(g/cm3) 7.9 2.8 4.45 2.1 1.5 1.7 2 

Module spécifique 
E/ρ (MPam3/kg) 25 25 25 105 87 118 26 

Résistance 
spécifique σ/ρ 
(MPam3/kg) 

0.24 0.18 0.23 0.95 0.65 à 0.85 0.60 0.90 à 1 

 

Propriétés comparées de composites unidirectionnels avec 60% de fibres en volume


		

		METAUX

		COMPOSITES A MATRICE ORGANIQUE



		

		Ac35NDC16

		Alliage Al 

		Alliage Ti

		Bore époxy

		Carbone HR époxy

		Carbone HM époxy

		Verre R époxy



		Module de Young  E (MPa)

		200’000

		72’000

		110’000

		220’000

		130’000

		200’000

		53’000



		Résistance à la rupture en traction r (MPa)

		1850

		500

		1000

		2000

		1000 à 1300

		1000

		1800 à 2000



		Masse volumique  (g/cm3)

		7.9

		2.8

		4.45

		2.1

		1.5

		1.7

		2



		Module spécifique E/ (MPam3/kg)

		25

		25

		25

		105

		87

		118

		26



		Résistance spécifique / (MPam3/kg)

		0.24

		0.18

		0.23

		0.95

		0.65 à 0.85

		0.60

		0.90 à 1
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Matériaux composites

•Fibres orientées
•Composites unidirectionnels (UD)

•Thermodurcis, thermoplastiques

•Haute performance mécanique
•Anisotropie

•Aerospatiale, sport, réservoirs 
sous pression…

Fibres continues

Matrice (polymère)

•Distribution de fibres courtes
(< 3mm)

•Surtout des matrices 
thermoplastiques

•Isotropie
•Moulage par injection

•Mécanique, microtechnique, 
automobile….

Fibres courtes

Matrice (polymère)

•Particules (1-400µm), silice, argile…

•Thermodurs and thermoplastiques

•Amélioration des propriétés 
• Stabilité dimensionnelles
•Reduction de coût

•Moulage par injection, coulée

•Mécanique, microthecnique, 
dentisterie….

Particules

Matrice (polymère)
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Micromécanique

 Introduction
 Lois des mélanges
 Halpin-Tsai
 Renforts discontinus

Matrice
Fibre

Micromécanique

Macromécanique

Stratifié

Conception de structures

une strate

Traité des Matériaux, TMX Vol 15, chap 4 et 8
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Introduction

Propriétés 
élastiques du 
composite

Quantité de renfort
Fractions volumiques

Propriétés de la matrice

Propriétés des renforts

Distribution des renforts
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Introduction

Polymère/ Interface/ renfort

Fractions volumiques et massiques

L’importance des fibres

Eléments de volume représentatif
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Fractions volumiques et massiques
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Correspondance % massique % volumique
en fonction de la densité de la résine
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Importance des fibres
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Module fibres de carbone: 430 GPa
Module matrice epoxy : 3.6 GPa
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Fibres continues: propriétés longitudinales

Fibres continues

Matrice 

Vf

Vm

 m F  FF f +=

    cLmfavec εεε ==

ff VAA . 
 
=

)1.(.  fmm VAVAA −==

A

)V( EV EEE fmffnal cLongitudi −+== 11
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Fibres continues: propriétés longitudinales

Fibres continues

Matrice 

mfmfffcc )V( E V EE εεε −+= 1

Vf

Vm

Hypo2: mx élastiques linéaires

mmff VAVAA ..   .. .  σσσ +=
 m F  FF f +=

    cLmfavec εεε ==

ff VAA . 
 
=

)1.(.  fmm VAVAA −==

A εσ .   Eavec =

Hypo1: interfaces parfaites

Hypo3: isodéformation

)V( EV EEE fmffnal cLongitudi −+== 11
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Fibres continues: propriétés transversales
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Fibres continues: propriétés transversales
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Hypo2: mx élastiques linéaires

)1(     fmffc VV −+= εεε

 m a  aa f +=

    cTmfavec σσσ ==

E
avec σε =   

Hypo1: interfaces parfaites

Hypo3: isocontraintes
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Rigidités à volonté

80

40

0

E UD,longitudinal

Tissu plein

Mat E UD,transverse

10    20      30     40      50    60    70    % volumique de fibres
20 30    40    50    60      70      80  % massique de fibres

Fraction de fibres (%)

20

60

Fibres de verre

200

Fibres de carbone

0
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Propriétés des composites unidirectionnels

Verre S
Epoxy

Kevlar 49
Epoxy

Carbone HR
Epoxy

Carbone
HM Epoxy Bore Epoxy

vf 65 % 65 % 65 % 65 % 55 %

Densité ρ 2.04 g/cm3 1.36 g/cm3 1.56 g/cm3 1.5 g/cm3 1.97 g/cm3

EL 56 GPa 86 GPa 145 GPa 270 GPa 220 GPa

ET 16 GPa 5.6 GPa 10 GPa 7 GPa 2.3 GPa

ν LT 0.26 0.32 0.29 0.3 0.26

GLT 7 GPa 2.5 GPa 5.5 GPa 5.7 GPa 6.9 GPa

σrL traction 1.75 GPa 1.5 GPa 1.2 GPa 0.95 GPa 1.3 GPa

σrT traction 0.04 GPa 0.03 GPa 0.08 GPa 0.035 GPa 0.065 GPa

σrL compression 0.9 GPa 0.28 GPa 1 GPa 0.75 GPa 2.85 GPa

σrT compression 0.15 GPa 0.14 GPa 0.25 GPa 0.2 GPa 0.03 GPa

γrLT cisaillement 0.06 GPa 0.05 GPa 0.1 GPa 0.055 GPa 0.06 GPa

L

T

N


		

		Verre S Epoxy

		Kevlar 49 Epoxy

		Carbone HR Epoxy

		Carbone HM Epoxy

		Bore Epoxy



		vf 

		65 %

		65 %

		65 %

		65 %

		55 %



		Densité 

		2.04 g/cm3

		1.36 g/cm3

		1.56 g/cm3

		1.5 g/cm3

		1.97 g/cm3



		EL

		56 GPa

		86 GPa

		145 GPa

		270 GPa

		220 GPa



		ET

		16 GPa

		5.6 GPa

		10 GPa

		7 GPa

		2.3 GPa



		 LT

		0.26

		0.32

		0.29

		0.3

		0.26



		GLT

		7 GPa

		2.5 GPa

		5.5 GPa

		5.7 GPa

		6.9 GPa



		rL traction

		1.75 GPa

		1.5 GPa

		1.2 GPa

		0.95 GPa

		1.3 GPa



		rT traction

		0.04 GPa

		0.03 GPa

		0.08 GPa

		0.035 GPa

		0.065 GPa



		rL compression

		0.9 GPa

		0.28 GPa

		1 GPa

		0.75 GPa

		2.85 GPa



		rT compression

		0.15 GPa

		0.14 GPa

		0.25 GPa

		0.2 GPa

		0.03 GPa



		rLT cisaillement

		0.06 GPa

		0.05 GPa

		0.1 GPa

		0.055 GPa

		0.06 GPa
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Equations de Halpin-Tsai

f
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V
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P
 1

)  1(
  

χ
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+
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f

mf

P
PP

où P est la propriété étudiée (ET ou GLT) et Pf et Pm sont 
respectivement les propriétés des fibres et de la 
matrice. Le paramètre ξ est déterminé empiriquement et 
définit l’efficacité du renforcement, en général ξ(ET) = 2 
et ξ(GLT) = 1. 
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Coefficients d’expansion thermique

Fibres anisotropes

TMX15 p88
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Résistance longitudinale lors de rupture 
de fibres continues alignées
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Résistance longitudinale lors de rupture de la matrice
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Résistance transversale : Cooper-Kelly R
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Résistance 
spécifique
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Composites à fibres discontinues

Fibres courtes

Matrice (polymère)

)1(E    mfibre norientatio ffflongueur VVEE −+= ηη

Facteur de formes l/d

Fraction volumique Vf

Qualité des interfaces

Distribution de la longueur des fibres

Distribution statistique de l’orientation des fibres

d

l

Halpin Tsai
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Equations de Halpin-Tsai
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Composites à fibres courtes 
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Modèle de Cox
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Composites à fibres courtes alignées

l/df > 100 : loi des mélanges
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Composites à fibres courtes alignées
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Composites à fibres courtes alignées
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Modèle de Kelly-Tyson
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La contrainte max dans les fibres 
augmente avec la longueur des fibres

! Uniquement pour composites à 
fibres courtes
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Composites à fibres courtes orientées

)V( E VEη ηE fmffibrelongueur fnorientatio −+= 1
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Composites à fibres courtes orientées
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Composites à fibres courtes orientées

)2cos(2+1
-1 1

2

2

θλλ
λ

π −






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Cox ou Halpin-Tsai pour chaque strate 
puis théorie des stratifiés
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Propriétés des polymères chargés de fibres courtes

Zytel® Zytel® 40% fibres courtes Zytel® 50% fibres courtes Propriété à 23°C 
0 % HR 50% HR 0 % HR 50% HR 0 % HR 50% HR 

Contrainte au seuil 
plastique σy (MPa) 84 MPa 48 MPa 205 MPa 135 MPa 230 MPa 155 MPa 

Allongement à la 
rupture εy (%) 50 % >300 % 3 % 6 % 2 % 5 % 

Module de flexion E  2.7 GPa 0.9 GPa 10.5 GPa 6.5 GPa 23.5 GPa 8.5 GPa 
Résistance au choc 
entaillé Izod  50 J/m 200 J/m 160 J/m 214 J/m 180 J/m 270 J/m 

Résistance au choc 
Charpy  Pas de rupture 60 kJ/m2  65 kJ/m2  

Densité ρ  1.14 g/cm3 1.45 g/cm3 1.58 g/cm3 
Point de fusion 245°C 233 °C 233 °C 
Température de 
flexion sous charge 
de 1.8 MPa  

65 °C  224 °C    

Absorbtion d’eau en 
24h (immersion)  1.6 %      

Retrait au moulage  1.3 % 0.18 % 0.16 % 
 

Comparaison des propriétés d ’un copolymère PA66/6 (Nylon) 
non chargé et chargé avec des fibres courtes


		Propriété à 23°C

		Zytel®

		Zytel® 40% fibres courtes

		Zytel® 50% fibres courtes



		

		0 % HR

		50% HR

		0 % HR

		50% HR

		0 % HR

		50% HR



		Contrainte au seuil plastique y (MPa)

		84 MPa

		48 MPa

		205 MPa

		135 MPa

		230 MPa

		155 MPa



		Allongement à la rupture y (%)

		50 %

		>300 %

		3 %

		6 %

		2 %

		5 %



		Module de flexion E 

		2.7 GPa

		0.9 GPa

		10.5 GPa

		6.5 GPa

		23.5 GPa

		8.5 GPa



		Résistance au choc entaillé Izod 

		50 J/m

		200 J/m

		160 J/m

		214 J/m

		180 J/m

		270 J/m



		Résistance au choc Charpy 

		Pas de rupture

		60 kJ/m2

		

		65 kJ/m2

		



		Densité  

		1.14 g/cm3

		1.45 g/cm3

		1.58 g/cm3



		Point de fusion

		245°C

		233 °C

		233 °C



		Température de flexion sous charge de 1.8 MPa 

		65 °C

		

		224 °C

		

		

		



		Absorbtion d’eau en 24h (immersion) 

		1.6 %

		

		

		

		

		



		Retrait au moulage 

		1.3 %

		0.18 %

		0.16 %
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