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Propriétés: module
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Propriétés des matériaux composites unidirectionnels

METAUX COMPOSITES A MATRICE ORGANIQUE

Ac35NDC16 |Alliage Al |Alliage Ti | Bore époxy | Careone HR | Carbone HM | Verre R
€poxy époxy €poxy

?,’\'Aﬁ;'e de Young E | ;454 72°000 110000 220’000 130’000 200’000 53’000

Résistance a la 1800 &

rupture en traction | 1850 500 1000 2000 1000 a 1300 | 1000 2000

o (MPa)

sk WelEE (5 ) g 28 4.45 2.1 15 1.7 2

(g/cm3) c : ; . c c

Module spécifique

Elo (MPam/ka) 25 25 25 105 87 118 26

Résistance

spécifique o/p 0.24 0.18 0.23 0.95 0.6520.85 |0.60 0.90 & 1

(MPam?®/kg)

Propriétés comparées de composites unidirectionnels avec 60% de fibres en volume
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		METAUX

		COMPOSITES A MATRICE ORGANIQUE



		

		Ac35NDC16

		Alliage Al 

		Alliage Ti

		Bore époxy

		Carbone HR époxy

		Carbone HM époxy

		Verre R époxy



		Module de Young  E (MPa)

		200’000

		72’000

		110’000

		220’000

		130’000

		200’000

		53’000



		Résistance à la rupture en traction r (MPa)

		1850

		500

		1000

		2000

		1000 à 1300

		1000

		1800 à 2000



		Masse volumique  (g/cm3)

		7.9

		2.8

		4.45

		2.1

		1.5

		1.7

		2



		Module spécifique E/ (MPam3/kg)

		25

		25

		25

		105

		87

		118

		26



		Résistance spécifique / (MPam3/kg)

		0.24

		0.18

		0.23

		0.95

		0.65 à 0.85

		0.60

		0.90 à 1






Matériaux composites

Matrice (polymére) Matrice (polymere)

Matrice (polymére)

Fibres courtes Particules

‘Particules (1-400um), silice, argile...

‘Fibres orientées ‘Distribution de fibres courtes
‘CompOSiTeS Unidir‘ecﬁonnels (UD) (< 3mm) oTher\modurs and *hermoplastiques
Thermodurcis, thermoplastiques -Surtout des matrices -Amélioration des propriétés
. _ thermoplastiques - Stabilité dimensionnelles
‘Haute performance mécanique ‘Isotropie -Reduction de coiit
*Anisotropie ‘Moulage par injection
. , . . . . ‘Moulage par injection, coulée

Aerospatiale, sport, réservoirs ‘Mécanique, microtechnique,

sous pression... automobile.... -Mécanique, microthecnique,

dentisterie....
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Micromeécanique

%—Matrice

SR Fibre

. B ’ .
Micromécanique
4

2 Une strate

> Introduction

> Lois des mélanges Ma?pomécqnique
» Halpin-Tsai b

> Renforts discontinus

Traité des Matériaux, TMX Vol 15, chap 4 et 8
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Introduction

Propriétés de la matrice

/ Propriétés des renforts

Propriétés —

élastiques du — Quantité de renfort

composite \ Fractions volumiques
Distribution des renforts
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Introduction

Polymere/ Interface/ renfort
Fractions volumiques et massiques
L'importance des fibres

Eléments de volume représentatif
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Fractions volumiques et massiques

Vf T V’” =1 Correspondance % massique 7% volumique
en fonction de la densité de la résine
V,=1-V, J
nl ® /
| Hypo : V sorosite = 0 %
1111
. T )
P="7 P=PYitrb, . R 7/ 4
M. = P fo . %//
;= | )
PiVy+ PV | %/ A
, ; ) —
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Importance des fibres

b o B
Module fibres de verre: 72 GPa
Module matrice epoxy : 3.6 GPa
V, 0.1 0.5
L
P ? ?
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b BV

P EV.+EV,

Module fibres de carbone: 430 GPa
Module matrice epoxy : 3.6 GPa

V, 0.1 0.5

i
F,
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Fibres continues: propriétés longitudinales

F=F +F

avec| £, =¢&, =&,

E =E=EJV +E(-V,)

cLongitudinal

4, =AYV, =40-V,)
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Fibres continues: propriétés longitudinales

Hypol: interfaces parfaites

F=F +F
cAd=0,4V,+ o,A4V,
avec o=FE.¢ Hypo2: mx élastiques linéaires

Ee =EV e + E(1-V,)e,

avec <9f =&,=¢, Hypo3: isodéformation

E =E=EJV +E(-V,)

cLongitudinal

4, =AYV, =40-V,)

I I pierre-etienne.bourban@epfl.ch



Fibres continues: propriétés transversales

a=a, +a,

avec |0, =0, =0,

E.E,
E(1-V,) + E,V,
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Fibres continues: propriétés transversales

Hypol: interfaces parfaites
a =a, +a,

g, = ngf + ¢, (1 —Vf)

avec & = o Hypo2: mx élastiques linéaires

o o o

<= Ly + —2(1-V,)
E, E 7 £

avec O0,=0, =0, Hypo3: isocontraintes
E E
_ _ m—f
ECT _ EZ

E(1-V,) + EJV,
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Rigidités a volonté

Fibres de carbone
Fibres de verre

200 80
—_ 60 E UD,longitudinal
&
S

40
w R .
o _Tissu plein
3 20 -~
O -
>3 - L E UD, transverse
0 o |~

v

10 20 30 40 50 60 70 % volumique de fibres
2030 40 50 60 70 80 % massique de fibres

Fraction de fibres (%)
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Propriétés des composites unidirectionnels

Verre S Kevlar 49 Carbone HR | Carbone Bore Epoxy

Epoxy Epoxy Epoxy HM Epoxy
vf 65 % 65 % 65 % 65 % 55 %
Densité p 2.04 g/cm® | 1.36g/cm® | 1.56g/cm® | 1.5g/cm® | 1.97 g/cm’
E. 56 GPa 86 GPa 145 GPa 270 GPa 220 GPa
Er 16 GPa 5.6 GPa 10 GPa 7 GPa 2.3 GPa
VLT 0.26 0.32 0.29 0.3 0.26
GLr 7 GPa 2.5GPa 5.5 GPa 5.7 GPa 6.9 GPa
ortraction 1.75 GPa 1.5 GPa 1.2 GPa 0.95 GPa 1.3 GPa
orr traction 0.04 GPa 0.03 GPa 0.08 GPa 0.035 GPa | 0.065 GPa
oL compression 0.9 GPa 0.28 GPa 1 GPa 0.75 GPa 2.85 GPa
o compression 0.15 GPa 0.14 GPa 0.25 GPa 0.2 GPa 0.03 GPa
YrLT Cisaillement 0.06 GPa 0.05 GPa 0.1 GPa 0.055 GPa 0.06 GPa
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		Verre S Epoxy

		Kevlar 49 Epoxy

		Carbone HR Epoxy

		Carbone HM Epoxy

		Bore Epoxy



		vf 

		65 %

		65 %

		65 %

		65 %

		55 %



		Densité 

		2.04 g/cm3

		1.36 g/cm3

		1.56 g/cm3

		1.5 g/cm3

		1.97 g/cm3



		EL

		56 GPa

		86 GPa

		145 GPa

		270 GPa

		220 GPa



		ET

		16 GPa

		5.6 GPa

		10 GPa

		7 GPa

		2.3 GPa



		 LT

		0.26

		0.32

		0.29

		0.3

		0.26



		GLT

		7 GPa

		2.5 GPa

		5.5 GPa

		5.7 GPa

		6.9 GPa



		rL traction

		1.75 GPa

		1.5 GPa

		1.2 GPa

		0.95 GPa

		1.3 GPa



		rT traction

		0.04 GPa

		0.03 GPa

		0.08 GPa

		0.035 GPa

		0.065 GPa



		rL compression

		0.9 GPa

		0.28 GPa

		1 GPa

		0.75 GPa

		2.85 GPa



		rT compression

		0.15 GPa

		0.14 GPa

		0.25 GPa

		0.2 GPa

		0.03 GPa



		rLT cisaillement

		0.06 GPa

		0.05 GPa

		0.1 GPa

		0.055 GPa

		0.06 GPa






Equations de Halpin-Tsai

I—ZVf

P

P,—P,
P, +S P,

e

ou P est la propriété étudiée (E; ou 6, ) et P, et P, sont
respectivement les propriétés des fibres et de la

matrice. Le paramétre  est déterminé empiriqguement et

définit I'efficacité du renforcement, en général G(E;) = 2
et &(6,7) = 1.
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Coefficients d'expansion thermique

Fibres anisotropes

TMX15 p88
E P :: L pierre-etienne.bourban@epfl.ch P
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Résistance longitudinale lors de rupture o

o de fibres continues alignées cl
GfR'i ______________ |z <& : TP, MMC — — o, =0/, + 0,1-V,)
Al: Hypo: Vf élevé O,
o =0V, + 0,7 (1-V,) 1
R o)
o A

A2: Hypo: Vim élevé

R
. o, (1-V,)
o +r-—t/tv-—-———t—— R
m Gm
ng
&
Gm ___________ O'm /
E E R v Vf
E R R '(9 Vf critique ]
f Em '
R e R
o, —0,"

v =—n ;

E P : [ .critique o R o & 21
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Résistance longitudinale lors de rupture de la matrice

B1: Hypo: Vf élevé

B2: Hypo: Vm élevé
o =c7f'9’”R Vo+ o, (1-V,)

R
o' =V (o, -0,")+0,"

t

f .critique

R k R
EP'—I (6, -0, )+a, 22
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Résistance transversale : Cooper-Kelly o,

c

d o,.a =0,.(a- d,) Hypol: résistance plus faible des interfaces
f «
- / JZR N(a—df) :l_ﬁ
ﬂ‘ - Gm a a
a S 1 a —d, o ] -
v Hypo2: arrangement cubique V, = : g done —/_ — |1
y ' 4a a T

C— ? — 4y,
o, =0,.(1-,]—=)
T

a——

e—) . . L 47, 47,
st une résistance o.de I'interface existe: o, ~o,.(1—,|]—=)+ 04—
T T

I I pierre-etienne.bourban@epfl.ch



]0.000 T T T 7 l_..\_v T | =TT T
, 2. STRENGTH-DENSITY ENGINEERING ,/Sic DIAWOND™
o MI ’: b ha
R e s I s.'. a METAL AND POLYMERS: YIELD STRENGTH C—L\Q s ENGINEERING -
e CERAMICS AND GLASSES: COMPRESSIVE STRENGTH X "°',£ro, /| ALLOYS -
ELASTOMERS : TENSILE TEAR STRENGTH ,/;; 5 J cermers
’ opo COMPOSITES: TENSILE FAILURE f ) i
spécifique & i
] N
1000 .
- ENGINEERIN Ti WALLOYS .
- COMPOSITES\L ' Mo ALLOYS .
R \\ .
B LAMINATES l‘ f ; CAST\J”
xere f\l T~ & . rons T1| | Mwiatiors i}
—-6- R ! 1 Atatiors /) | cuaLors |
& |
> 100 f o
— F ~ (}‘ ENGINEERING A
- F Al .
o) . ParaLLEL /7
- T0 GRAIN \ 7 7]
T WooD POXIES yay
— = PRODU POLYESTERS \ / s -
o AsH 2 o
- wooDs~ /5, 77
= T 1
m ]0 - PERPENDICULAR | CE—RA—NLCé
= - } TO_GRAIN ) | € _ENGINEERING 7 3
X LOPE POLYMERS A h
m R _ —E /_ // / :
i BumL e /2/\ ]
i 7 GUIDE LINES
ELASTOMERS A4~ 7 7 ~| FOR MINIMUM |
R POLYMERS P s WEIGHT DESIGN|
" FOAME ~ /
/ FOAMS _ A,
1 Ml Z /
- - ~ P g -
- -~ - e d // .
= - -~ Vd 7/ :
- o, & i e ﬂ
- —_ C A / -
P ~ 1, Y
n o b z -
7=C -g =C
01 1 1 1 [ I T | 1 1 1 11 11 1
01 0.3 1 3 10 30

E P :: L pierre-etienne.bourban@epfl.ch DENSITY p (Mg /m)

M F_Ashby, Malenals Selechon fir Mechancal desin, Pergamaon Pres:



Composites a fibres discontinues

Matrice (polymére)

Facteur de formes I/d
Halpin Tsai

Fraction volumique V;

Fibres courtes QUGIlTé des inTer'fGCCS

Distribution statistique de l'orientation des fibres

Distribution de la longueur des fibres

k= n orientation n longueur ﬁbreE f Vf + Em (1 o Vf )

P .
< >

I I pierre-etienne.bourban@epfl.ch



Equations de Halpin-Tsai

E,‘(ET):Z

p=tnl*e2h) (G = 1
I—ZVf
_ Pf _Pm
Z_g+§m

= 2
I pierre-etienne.bourban@epfl.ch



=PrL ...

Composites a fibres courtes

1000

E1 100
MPa

10

tienne.bourban@epfl.ch

log (¢/dy)

I I
Equations d’Halpin-Tsai
Données
| expérimentales |
A
T
Iy
L
\/
B Polyamide/Caoutchouc V; = .35
| | | | |
0 1 2 3

27



77 longueur fibre MOdéIe de COX

2
7 d; (c +do)—oc|-7zd,zdx, =0

do _4r1 cs(xl):ijrdx1

dx, d; d; ¢ \

— o)
2 dx, &®*0‘+
d°c —4c 4¢ : do

€, avec B’ =

def
cosh 3 (¢/2 - xl)}

o(x,)=E; ¢ {1—
cosh (/3/2)

= 2
I pierre-etienne.bourban@epfl.ch



Composites a fibres courtes alignées

_tanh (B e/z)}

o.=E.¢g |1
f f m|: B€/2

Y

G, =6.V,+0c_V_

o, =E;¢e_|1- tanh(p£/2) V. +oc_ V_
B2
B =E, V. |I- tanh(34/2) +E. V.
B4/2

60

50

E= norientation nlongueur ﬁbreE f Vf + Em (1 o Vf )

E - L
I I pierre-etienne.bourban@epfl.ch

Graphite/Epoxy, V; = .5

0 1 2 3

log (¢/dg)

|/d; > 100 : loi des mélanges

29



Composites a fibres courtes alignées

-

/N
le—t—»|

AT

X1

A

—> >
e/2 e/2
< i+e >

E - L
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Cox

tanh(34/2
’C=C(u —u ) E, =E; V;|1- (PEr2) +E, V
f m B4/2 nor
Cox-Kelly
_diE e, Blsinh (BU/2-x,)) ||
4 cosh(B//2)
" 50
Bore/Epoxy
a0
Hwang-Gibson c
p -1 90F Modéle de Cox modifié
m (e/d) =f.25
i1 _l/(L+e) N e/(l+e) 207/% 5 m= valeurs expérimentales
Ec Elx Em 10
] * ] ] ] ] ]
10 30 50 70
vd,
30



Composites a fibres courtes alignées

50
Modified Cox model
i for i:().125d AR
LA for £=0250d + ===
2 A PP
* eemTTe =]
'. ’_.—'d_-’

m Experimental data

A FEM data for g: 0,125 d

Modulus ratio (E/E,)

+ FEM data for % =0.250 d

e FEM data for gz 0.375 d

1 1 1 1 1 1 1 1 1 1 1 1 1 1 Il

0
0 10 20 30 40 50 60 70 80
Fiber aspect ratio (L/d)

FIGURE 6.17
Comparison of predictions from the modified Cox model and FEA with experimental data for

boron/epoxy-aligned discontinuous fiber composite at different fiber aspect ratios. (From
Hwang, S. |. and Gibson, R. F. 1987. Journal of Engineering Materials and Technology, 109, 47-52.

Reprinted with permission from ASME.)
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Modéle de Kelly-Tyson

T ¢
0 » X1
) o
GI'T'IQX
(0
» X
«— —

AN

\ N
\Ma’rrice \ Fibre
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(@)

4
f
B 2’Cy 14
Gmax - d
f

La contrainte max dans les fibres
augmente avec la longueur des fibres

d 7 Ot
2 T,

| Uniquement pour composites a
fibres courtes

longueur critique =/ =
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Composites a fibres courtes orientées

E = ﬂorientalion”IOngueurﬁbreEfo + Em(l — Vf) p _ }70 _
% « 4—\\\‘%\“ —
= // e -
///// Y
—
norientation ~ COS4 (04

4
Horientation = an COS &,
n

33



Composites a fibres courtes orientées

E = ﬂorientation”longueurﬁbreEfo + Em(l B Vf) p.= N, =
h-:i%- —) p, =1 n,=1cos'0=1

///’/é,—"'/ (04 _\\\\ﬁ“ N p, =1 n,=1cos'90=0
///// I 1“ plzpzzl ;/IO:%COS4O+%COS490:%

— - 2
N 1 1 1
4 - — P =D, 25 n, =Ecos445+50054(—45)=z
norientation ~COS & |
b =D :p3:p4:Z
1 3
~ E 4 =—(cos* 0+ cos*90+cos* 45+ cos*(—45) ==
;/Iorientation ~ pn COS an - o 4( ( ) 8
n
1
v Aléatoire 3dim o ;g 5
;p” =1 - $ —) Aléatoire 2dim Engo +§E90
—
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Composites a fibres courtes orientées

60 [ ©
i o\ Analogie
/ Y 50 (o) avec stratifié
Composite & 40 | O\
fibres courtes orientées 2-D E, 6 Mesures
GPa 30 g0
f(@) ( 1 j 1-22 20 -
A Bore/Epoxy, 2-D aléatoire
X\A— )1+ A =22 c0s(20) 10 L composite a fibres courtes
Vi =04
1K Ty 0 g ®0 100 200 300
. /2 T2 Q
I l-]|T|'i1|' || II t/d¢
M >y

|
||||| o ||||
I/f/////// ":IH'
%/f __ Modeéle du s’rM

= Cox ou Halpin-Tsai pour chaque strate
' ek puis théorie des stratifiés
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Propriétés des polymeres chargés de fibres courtes

Propriété a 23°C

Zytel®

Zytel® 40% fibres courtes

Zytel® 50% fibres courtes

0% HR

50% HR

0% HR

50% HR

0% HR

50% HR

Contrainte au seuil
plastique oy (MPa)

84 MPa

48 MPa

205 MPa

135 MPa

230 MPa

155 MPa

Allongement a la
rupture g, (%)

50 %

>300 %

3%

6 %

2%

5 %

Module de flexion E

2.7 GPa

0.9 GPa

10.5 GPa

6.5 GPa

23.5 GPa

8.5 GPa

Résistance au choc
entaillé 1zod

50 J/m

200 J/m

160 J/m

214 J/m

180 J/m

270 J/m

Résistance au choc
Charpy

Pas de rupture

60 kJ/m?

65 kJ/m?

Densité p

1.14 g/cm®

1.45 g/cm®

1.58 glcm?®

Point de fusion

245°C

233 °C

233 °C

Température de
flexion sous charge
de 1.8 MPa

65 °C

224 °C

Absorbtion d’eau en
24h (immersion)

1.6 %

Retrait au moulage

1.3 %

0.18 %

0.16 %

. NEnEnnEs

Comparaison des propriétés d ‘un copolymere PA66/6 (Nylon)

non chargé et chargé avec des fibres courtes

E - L
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:

The miracles of sclence-
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		Propriété à 23°C

		Zytel®

		Zytel® 40% fibres courtes

		Zytel® 50% fibres courtes



		

		0 % HR

		50% HR

		0 % HR

		50% HR

		0 % HR

		50% HR



		Contrainte au seuil plastique y (MPa)

		84 MPa

		48 MPa

		205 MPa

		135 MPa

		230 MPa

		155 MPa



		Allongement à la rupture y (%)

		50 %

		>300 %

		3 %

		6 %

		2 %

		5 %



		Module de flexion E 

		2.7 GPa

		0.9 GPa

		10.5 GPa

		6.5 GPa

		23.5 GPa

		8.5 GPa



		Résistance au choc entaillé Izod 

		50 J/m

		200 J/m

		160 J/m

		214 J/m

		180 J/m

		270 J/m



		Résistance au choc Charpy 

		Pas de rupture

		60 kJ/m2

		

		65 kJ/m2

		



		Densité  

		1.14 g/cm3

		1.45 g/cm3

		1.58 g/cm3



		Point de fusion

		245°C

		233 °C

		233 °C



		Température de flexion sous charge de 1.8 MPa 

		65 °C

		

		224 °C

		

		

		



		Absorbtion d’eau en 24h (immersion) 

		1.6 %

		

		

		

		

		



		Retrait au moulage 

		1.3 %

		0.18 %

		0.16 %






	Mécanique des composites 2025
	Mécanique des composites
	Biblio
	Propriétés: module - densité
	Propriétés des matériaux composites unidirectionnels
	Matériaux composites
	Micromécanique
	Introduction
	Introduction
	Fractions volumiques et massiques
	Importance des fibres
	Fibres continues: propriétés longitudinales
	Fibres continues: propriétés longitudinales
	Fibres continues: propriétés transversales
	Fibres continues: propriétés transversales
	Rigidités à volonté
	Diapositive numéro 17
	Propriétés des composites unidirectionnels
	Equations de Halpin-Tsai
	Coefficients d’expansion thermique
	Résistance longitudinale lors de rupture �de fibres continues alignées
	Résistance longitudinale lors de rupture de la matrice
	Résistance transversale : Cooper-Kelly
	Résistance �spécifique
	Composites à fibres discontinues
	Equations de Halpin-Tsai
	Composites à fibres courtes 
	Modèle de Cox
	Composites à fibres courtes alignées
	Composites à fibres courtes alignées
	Composites à fibres courtes alignées
	Modèle de Kelly-Tyson
	Composites à fibres courtes orientées
	Composites à fibres courtes orientées
	Composites à fibres courtes orientées
	Propriétés des polymères chargés de fibres courtes

