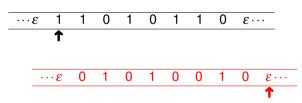


Information, Calcul et Communication Compléments de cours

On considère la machine de Turing dont la table de transition est :

	0	1	ε
1	$(2, \varepsilon, +)$	$(3, \varepsilon, +)$	$(4, \varepsilon, -)$
2	(2, 0, +)	(2, 1, +)	(4, 0, -)
3	(3, 1, +)	(3, 0, +)	(4, 0, -) (4, 0, +)

Quel est l'état de la bande lorsque la machine s'arrête, si elle a démarré avec sa tête de lecture positionnée comme suit :



Sachant que « 3-SAT » est le nom d'un problème de décision célèbre pour les informaticien(ne)s, connu pour être dans NP, que peut-on en dire?

- « 3-SAT » n'a pas de solution (algorithme de résolution) :
 faux (en fait, tous les problèmes de NP ont des solutions, mais on ne sait pas à ce jour
 s'ils ont des solutions efficaces)
- « 3-SAT » n'est pas dans P : On ne sait pas!
- ➤ On connaît des algorithmes efficaces pour résoudre toute instance de « 3-SAT » : faux (cf ci-dessus; et car sinon 3-SAT serait dans P, donc, à ce jour, on ne connait pas de tels algorithmes; mais il est vrai qu'on ne sait pas s'il n'en existe pas...)
- ► Toute « solution » (instance positive) de « 3-SAT » est facilement vérifiable : vrai (c'est la définition de NP)

Supposons que l'on sache qu'un problème de décision « X » n'est pas dans NP. Que peut-on en dire?

- « X » est dans P : faux
- « X » est indécidable : pas forcément
- « X » est décidable et vérifier qu'une « solution » (instance positive) du problème « X » en est effectivement une prend un temps au plus polynomial par rapport à la taille de cette solution : faux
- Soit « X » est indécidable, soit vérifier qu'une « solution » (instance positive) du problème « X » en est effectivement une prend un temps plus que polynomial par rapport à la taille de cette solution : vrai

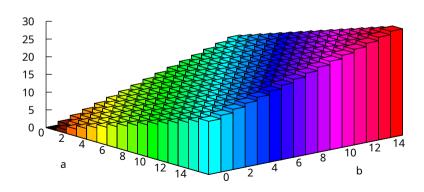
Supposons que l'on connaisse un algorithme de complexité $4 n \log(n) + 3 n + 2$ permettant de résoudre un problème de décision « Y » portant sur des données de taille n. Que peut-on en déduire ?

- « Y » n'est pas dans NP : faux
- « Y » est dans NP, mais pas dans P : faux
- « Y » est dans P : vrai

Leçon I.4 (Représentation de l'information) – Points clés

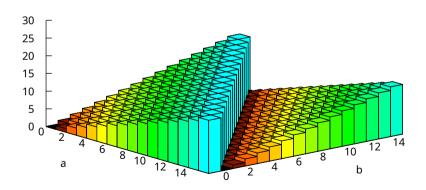
- nécessité d'une convention on en a (vu cing, mais) retenu trois :
 - entiers positifs (ou nul): unsigned int (voir semaine 7 du cours de C++)
 - entiers relatifs : int (complément à deux)
 - décimaux, représentation à virgule flottante : double
- ▶ nombre de bits pour représenter K objets : [log₂ K]
- domaine couvert
- précision (relative/absolue)
- comment utiliser les trois conventions ci-dessus

Leçon I.4 – Autre vue sur l'addition (sur 4 bits ici)



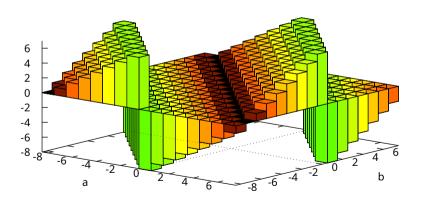
Leçon I.4 – Autre vue sur l'addition (sur 4 bits ici)

add(a,b) sur 4 bits (non signé)



Leçon I.4 – Autre vue sur l'addition (sur 4 bits ici)

add(a,b) sur 4 bits (signé complément à deux)



Leçon I.4 – Etude de cas 1

Que représente 10110101?

- ► CONVENTION???
 - rates avec les trois (dont : signe, exposant sur 3 bits et mantisse, dans cet ordre)
- entiers positifs :

$$128 + 32 + 16 + 4 + 1 = 181$$

entiers négatifs :

opposé de
$$01001011 : -75$$
 (on peut aussi faire $-(256 - 181)$)

virgule flottante, signe (1 bit), exposant (3 bits), mantisse (4 bits) :

$$10110101 = 1 \quad 011 \quad 0101$$

$$= -2^{011} \times 1,0101$$

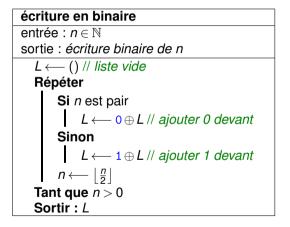
$$= -2^{3} \times \left(1 + \frac{1}{4} + \frac{1}{16}\right)$$

$$= -\left(2^{3} + 2^{1} + 2^{-1}\right)$$

$$= -10.5$$

Leçon I.4? – Etude de cas 2

Donnez une version récursive de :



Leçon I.2 – Etude de cas 2 – Solution

BinRec : écriture en binaire récursive		
entrée : $n \in \mathbb{N}$		
sortie : <i>écriture binaire de n</i>		
$L \leftarrow () // liste vide$		
Si <i>n</i> > 1		
$L \longleftarrow BinRec(\lfloor \frac{n}{2} \rfloor)$		
Si n est pair		
L ← L⊕0 // ajouter 0 à la fin		
Sinon		
L← L⊕1 // ajouter 1 à la fin		
Sortir: <i>L</i>		

```
BinRec : écriture en binaire récursive
entrée : n \in \mathbb{N}
sortie : écriture binaire de n
  L \leftarrow () // liste vide
  Si n > 1
       L \leftarrow BinRec(\lfloor \frac{n}{2} \rfloor)
  Sortir: L \oplus (n \mod 2)
BinRec : écriture en binaire récursive
entrée : n \in \mathbb{N}
sortie : écriture binaire de n
  Si n < 1
       Sortir: (n)
  Sortir: BinRec(\lfloor \frac{n}{2} \rfloor) \oplus (n \mod 2)
```