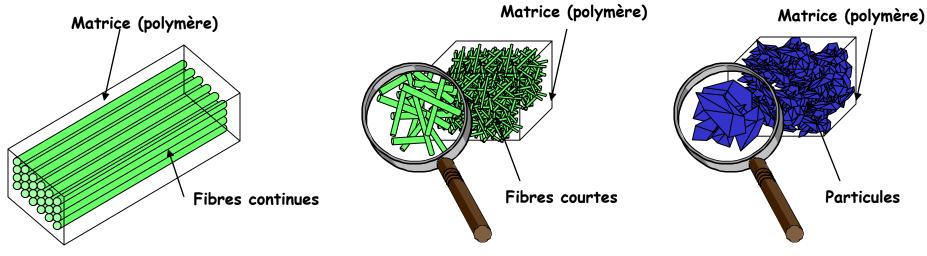
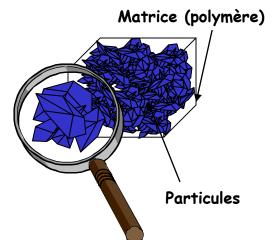

Les composites polymères MSE340-2025

Constituants

pierre-etienne.bourban@epfl.ch veronique.michaud@epfl.ch

Institut des matériaux (IMX)
Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne

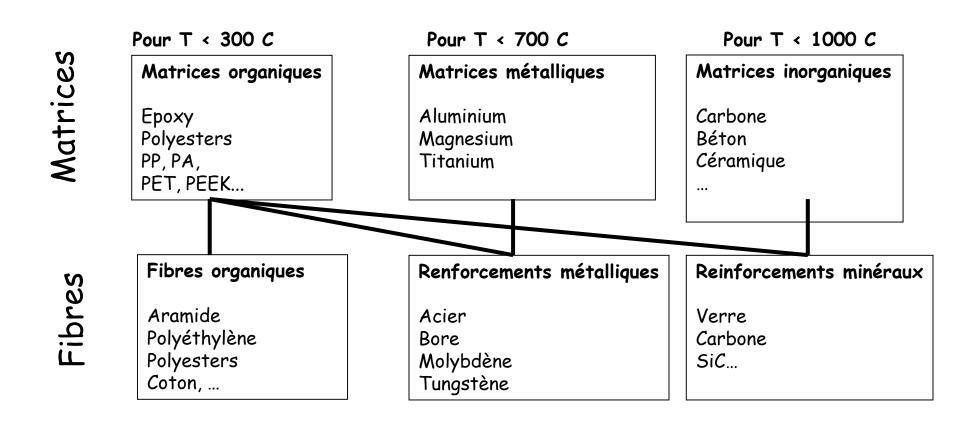




Un composite?

Une combinaison et une synergie entre deux et plusieurs matériaux

Un matériau constitué d'une matrice continue contenant un renfort sous forme de fibres ou de particules.



Menu du jour

- ☐ Présenter les différentes fibres de renfort, comment elles sont produites, les principales propriétés.
- □ Présenter les principaux polymères utilisés pour la matrice, et leurs propriétés.
- □ Commencer à vous faire réfléchir sur quels constituants choisir pour quelle application.

Matrices et renforts

Modules et résistances

	Densité	E [GPa]	$R_{\rm m}$ [GPa]
Trichites			
Graphite	2,2	700	20
Si ₃ N ₄	3,1	400	7-14
SiC	3,2	500-700	7-21
Al_2O_3	4,0	420-530	14
Métaux (fils étirés)			
Acier (piano 0,9 % C)	7,8	210	4
Acier inoxydable	7,9	200	2,4
Molybdène	10,3	365-410	2,1
Tungstène	19,3	345	1,9-4
Fibres			
Polyéthylène UHMW-PE	0,97	~70	~4
Carbone haut module	1,95	390	2,2
Carbone haute résistance	1,75	250	2,7
Bore	2,6	400	3,0
Silice	2,2	700	3,6-6,0
Polyamide aromatique (Kevlar 49)	1,45	130	2,7
Verre E	2,60	73	3,4
Verre R	2,53	86	4,4
Asbeste (Chrysotile)	2,5	160	6
Plaquettes			
Mica (muscosite)	2,0	170	3,0

Renforts

A: Haute résistance mécanique:

- effet de taille: pour une céramique, la contrainte à rupture augmente quand le rayon diminue.
- effet d'orientation des liaisons atomiques.
- effet de la taille des grains, si polycristallin, ou de l'orientation des plans cristallographiques (whiskers, nanofibres)

Renforts

B: Flexibilité

Flexion d'une poutre cylindrique:

E module, I moment d'inertie $I=\pi d^4/64$

R rayon de courbure et M moment de flexion

 $R=EI/M=E\pi d^4/64 M$

Donc R est proportionnel à d^4 .

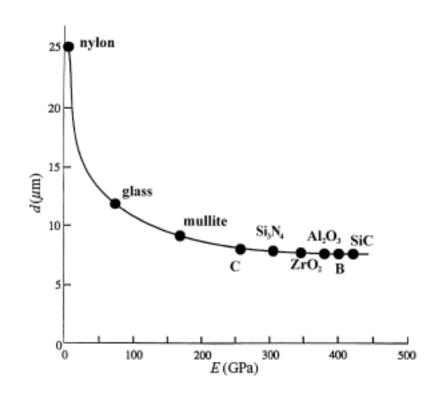


Figure 1
Diameter of various fibers with a flexibility equal to that of a 25 μm diameter nylon fiber. Given a sufficiently small diameter, it is possible to produce, in principle, an equally flexible fiber from a polymer, a metal, or a ceramic.

Renforts

C: Facteur de forme et architecture textile

Matériaux		Verre .	Aramide	Acier		Carbone
Materiaux	0		400			
Forme	Particules	Fibres:	courtes	longues	discontinues	continues
	1		co			
Configuration	Aléatoire		Tricot		Tissu	
	0		1			

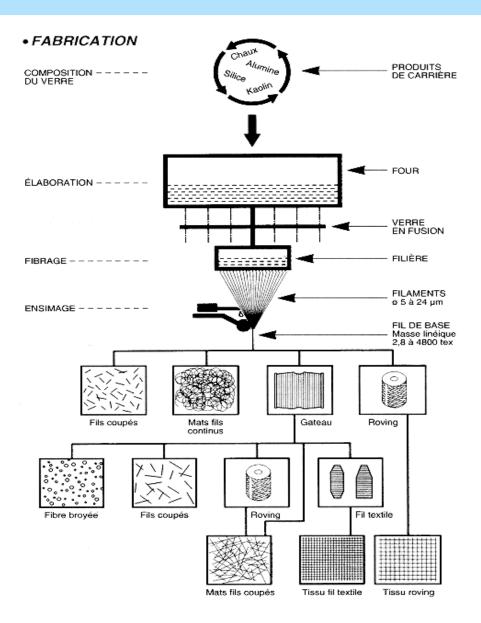
Les fibres

De nombreuses sortes, les plus importantes:

- verre
- carbone
- aramide
- naturelles
- polymères techniques (PE, PET, PBO..)
- métalliques
- céramiques

Propriétés des fibres

Material (fiber)	Tensile modulus (GPa)	Tensile strength (GPa)	Compressive strength (GPa)	Density (gcm ⁻⁸)
Steel	200	2.8		7.8
Al alloy	71	0.6		2.7
Ti alloy	106	1.2		4.5
Alumina	350-380	1.7	6.9	3.9
Boron	415	3.5	5.9	2.5-2.6
SiC	200	2.8	3.1	2.8
S-glass	90	4.5	> 1.1	2.46
Carbon P100 (pitch-based)	725	2.2	0.48	2.15
Carbon M60J (PAN-based)	585	3.8	1.67	1.94
Kevlar 49	125	3.5	0.39 - 0.48	1.45
Kevlar 149	185	3.4	0.32 - 0.46	1.47
PBZT	325	4.1	0.26 - 0.41	1.58
PBZO	360	5.7	0.2 - 0.4	1.58
Spectra 1000	172	3.0	0.17	1.0
Vectran	65	2.9		1.4
Technora	70	3.0		1.39
Nylon	6	1.0	0.1	1.14
Textile PET	12	1.2	0.09	1.39


Les fibres de verre

Propriétés des filaments:

- •Taille, 10 à 20 µm de diamètre
- Module 70 GPa, jusqu'à 90 GPa
- Résistance à rupture: 3.95 GPa si fraîche, moins dans la pratique 1 à 2 GPa.
- Points négatifs: Résistance aux acides, abrasion, corrosion sous contrainte dans l'eau.
- Coût: quelques CHF/kg, jusqu'à beaucoup plus pour le Quartzel.

Fabrication

Compositions

Table 1 Composition ranges for the oxides used in specific commercial glass fibers.

Oxide	A-Glass (%)	C-Glass (%)	D-Glass (%)	E-Glass (%)	ECR-Glass (%)	AR-Glass (%)	R-Glass (%)	S-2-Glass (%)	No boron E-Glass (%)
SiO ₂	63-72	64-68	72–75	52-56	54-62	55–75	55-65	64-66	52-62
Al_2O_3	0-6	3-5	0-1	12 - 16	9-15	0-5	15 - 30	24-25	12-16
B_2O_3	0–6	4–6	21-24	5-10		0–8			
CaO	6-10	11-15	0-1	16-25	17-25	1-10	9-25	0-0.1	16-25
MgO	0-4	2-4		0-5	0-4		3-8	9.5 - 10	0-5
ZnO					2-5				
BaO		0-1							
Li ₂ O						0-1.5			
$Na_2O + K_2O$	14 - 16	7-10	0-4	0-2	0-2	11-21	0 - 1	0-0.2	0-2
TiO ₂	0-06			0-1.5	0-4	0-12			0-1.5
ZrO ₂						1-18			
$Fe_2\tilde{O}_3$	0-0.5	0-0.8	0-0.3	0 - 0.8	0-0.8	0-5		0-0.1	0-0.8
F_2	0-0.4			0–1		0-5	0-0.3		0-1.0

Source: Hartman et al., 1996.

Propriétés

E-Glass: Good Electrical properties

But poor chemical resistance against acids

Low cost: $\sim 2.5 / 3$ CHF/Kg

C-Glass: Better resistance to Chemical corrosion

■ Good quality of surface

D-Glass: High **D**ielectric performances ($\varepsilon = 3.85$ à 1 MHz)

High cost: 40 x E-Glass / Mechanical performances lower than E-Glass

R-Glass: High mechanical **Resistance** (modulus 86GPa)

Cost: 10 x E-Glass / Good resistance to chemical corrosion (slightly < C-Glass)

AR-Glass: Alkali-Resistant

Used in building -> Good chemical resistance against alkalies (and also acids)

But hydrophilic

Ensimage

Water Spray

T>100°C

Sizing Applied Glass Fibers

Glass Fibers

Gathering Shoe

To Secondary processing at > 1000 m/min (200 ms)

Table 8 Glass fiber sizing ingredients and functions.

Ingradient	Function	Typical chemistry
Film formers	Compatibilize with matrix, protect fibers, provide strand integrity	PVAc, epoxies, polyesters, polyurethanes, polyolefins, etc.
Lubricants	Protect fibers, improve forming efficiency	Imidazolines, pentamine strearates, hydrocarbon waxes, polyethylene glycols, mineral oil/amide esters, etc.
Coupling agents	Reduce aqueous stress corrosion, bonding between glass and resin	Organosilanes, chromates, titanates, and zirconates
Antistats	Reduce static charging via moisture adsorption	Quaternary ammonium compounds, halide salts
Nucleating agents	Increase number of spherulites in semicrystalline matrices	Maleated polypropylene
Surfactants	Emulsify resins, antifoam, adjust viscosity	Polyoxyethylene nonylphenyl ether, glycol ethers, EO/PO
Acids, bases	pH adjustment	Acetic acid, ammonium hydroxide

Les fibres de quartz, Quartzel®

- 1960: military and aeronautic only
- Nowadays : military and aeronautic 30%
 - -> New applications : industrial insulation, semiconductor, printed circuit boards...

Quartzel®: Ultra pure silica glass (99,99% of SiO₂)

Chemical purity: less than 100 ppm of impurities

Outstanding performances: - Very good dielectric performance ($\varepsilon = 3.74$ à 10 GHz)

- Excellent mechanical properties (~ R-Glass)
- Very good chemical resistance against acids (except HF)
- Low coefficient of thermal expansion

Available sizings: epoxy / cyanate ester

Approximate cost: very high purity (semiconductor application) -> 175 to 275 CHF/Kg

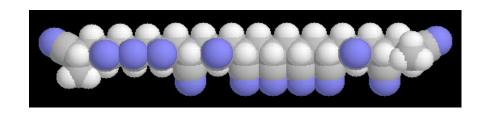
But in the future:

Quartzel4 $^{\circledR}$ with 99,9% of SiO₂ (the same properties than Quartzel $^{\circledR}$ but lower cost \sim 90 CHF/Kg)

Les fibres de carbone

Historique: initialement à partir de résidus du pétrole (brai) pour des filaments de lampe...s' améliore dans les années 60 grâce à des traitements thermiques ou d'oxydation.

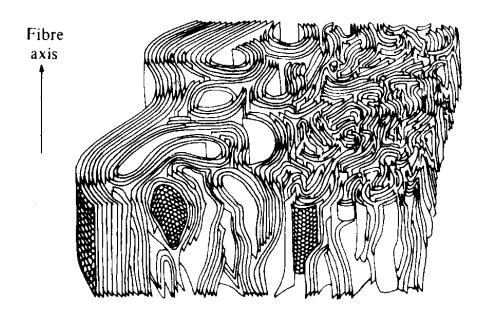
2 méthodes principales:

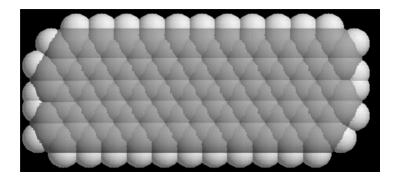

- A partir d'un polymère précurseur, le PAN (fibre acrylique)
- A partir du brai.

Les fibres PAN: Fabrication

Fibres à base de PAN

$$-\text{CH}_2-\text{CH}_{\overline{n}}$$
 $C \equiv N$


Fabrication


- 1- filage et étirage du PAN
- 2- stabilisation 200 à 300°C dans l'air pendant 30 minutes
- 3- Carbonisation 1000 à 1600°C dans l'azote pour High Strength, 2500 à 2800° C pour High Modulus (sous tension)
- 4- Traitement de surface: oxidation anodique dans la soude...

Structure

Les fibres de C obtenues par pyrolyse d'un précurseur polyacrylonitrile (PAN) possèdent des propriétés mécaniques exceptionnelles

Représentation schématique d'une fibre de C

Propriétés

Propriétés des fibres base PAN:

HS: E = 200 à 400 Gpa,

Résistance: 3.6 à 4.6 Gpa,

% élongation: 1.4-1.8

HM: E = 600-800 Gpa,

Résistance: 3.6 à 4 Gpa,

%élongation: 0.5-0.8

Module transverse: environ 10 Gpa Coefficient d'Expansion thermique longitudinal: $-0.3 \text{ à } -0.7 \text{ } 10^{-6}/^{\circ} \text{ C}$

Types et Propriétés

Table 2 Mechanical and other properties of types of CFs extracted from manufacturers' data sheets.

Mfr.	Fiber type	Filament count	Filament diameter (µm)	Surface area (m² g ⁻¹)	Tensile strength (MPa)	Tensile modulus (GPa)	Tensile strain (%)	Density (g cm ⁻³)
Amoco	T-300	1k, 12k	7.0	0.45	3650	231	1.4	1.76
[Thornel]	T-40	12k	5.1	0.5	5650	290	1.8	1.81
	T650/42	6k, 12k	5.1	0.5	4620	290	1.6	1.78
	T-50	3k, 6k	6.5	0.45	2900	390	0.7	1.81
Hexcel	AS4	3k, 12k			3930	221	1.7	1.79
	IM4	12k			4138	276	1.5	1.73
	IM7	6k, 12k			5379	276	1.8	1.77
	UHM	3k, 12k			3447	441	0.8	1.87
Mitsubishi	TR30	3k			3530	235	1.5	1.79
rayon	TR50	12k			4900	235	2.1	1.80
[Pyrofil]	MR50k	12k			5490	294	1.8	1.80
	SR50	12k			4220	490	0.9	1.88
Sigrafil	C30		6.8		3000	230	1.4	1.78
_	C35		7.0		3200	210	1.4	1.8
Tenax	HTA	1k, 24k	7.0		3950	238	1.5	1.77
	UTS	12k	7.0		4800	240	2.0	1.8
	IMS	6k, 24k	5.0		5500	290	1.9	1.8
	UMS	12k	4.7		4500	435	1.1	1.81
Toho	HTA	3k, 12k	7.0		3920	235	1.7	1.77
rayon	ST4	12K	7.0		4810	240	2.0	1.78
[Besfight]	IM 600	12k, 24k	5.0		5790	285	2.0	1.80
	HM35	12k	6.7		3240	345	0.9	1.79
	TM40	12k	6.2		3430	390	0.9	1.85
_	UM68	12k	4.1		3330	650	0.5	1.97
Toray	T300*	1 - 12k	7.0		3530	230	1.5	1.76
[Torayca]	T300J*	3k, 12k	7.0		4210	230	1.8	1.78
 available 	T700S	12k	7.0		4900	230	2.1	1.80
from	T800H*	6k	5.0		5490	294	1.9	1.81
Soficar	T1000G	12k	5.0		6370	294	2.2	1.80
	M40J*	6k	5.0		4410	377	1.2	1.77
	M 50J	6k	5.0		4120	475	0.8	1.88
	M 60J	3k, 6k	5.0		3820	588	0.7	1.94
	X665	6k	5.0		3430	637	0.5	1.98
	M40*	6k, 12k	7.0		2740	392	0.7	1.81
Zoltek	Panex33	48k, 320k	7.4		3600	228		1.78
[Panex]	Panex30				1552	221		1.75

Applications

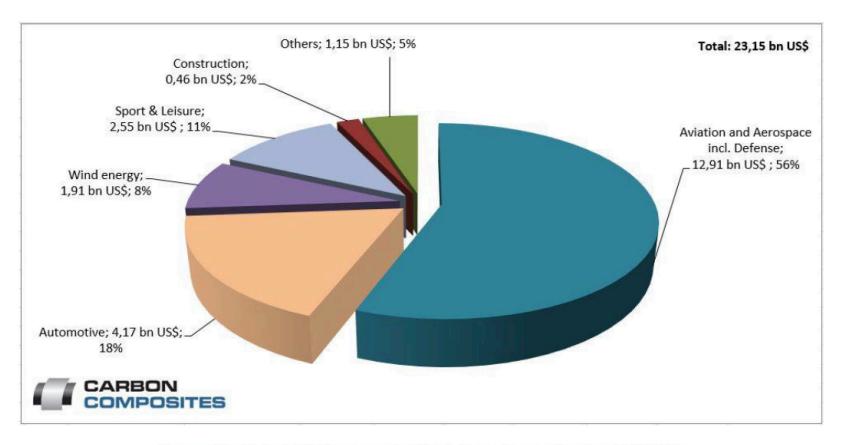
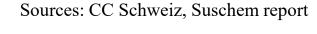
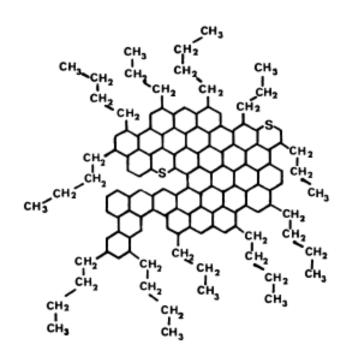



Figure 10: Global CC-Turnover in Thsd. Tons by application (11/2018).



Les fibres de carbone Brai

Fibres à base de brai:

le brai forme des cristaux liquides si traité thermiquement, que l'on peut orienter par filage.

Natural Pitch

Figure 5 A naturally occurring pitch with a large aromatic core and long solubilizing alkyl groups, MW = 3200. The thermally unstable alkyl groups cleave off at spinning temperatures to cause unsatisfactory bubbling.

Fabrication

Fibres à base de brai:

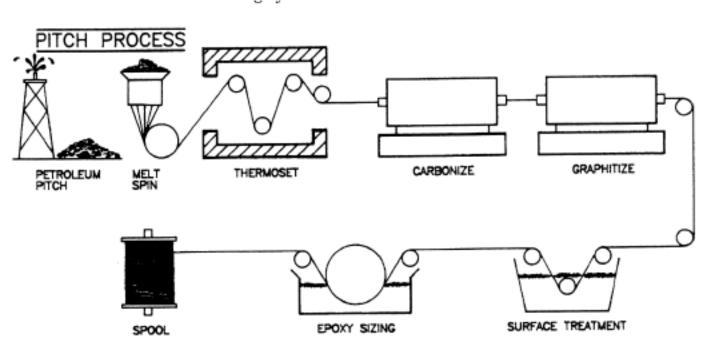


Figure 13 Pitch precursor carbon fiber process. Pitch is melt spun into fibers that are thermoset and then carbonized to carbon fibers. The modulus of mesophase pitch precursor carbon fibers is increased by subsequently heating to a high temperature, and the surface of the fiber is etched for improved bonding with a resin matrix (reproduced by permission of Fiber Producer, Greenville, from Fiber Producer, 1979, pp. 16–21).

Types et propriétés

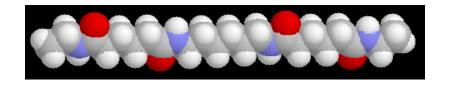
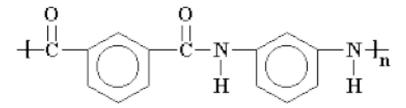

Fibres à base de brai: Modules: 160 à 930 Gpa, Résistance: 1.4 à 3 Gpa Fibres très chères et donc moins utilisées.

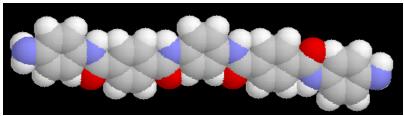
Table 3 Manufacturer's data on mechanical properties.

	Tensile modulus (GPa)	Tensile strength (GPa)	Density (g cm ⁻³)
BP-Amoco			
P-25	160	1.4	1.90
P-55S	380	1.9	2.00
P-75S	520	2.1	2.00
P-100	760	2.4	2.16
P-120	830	2.4	2.17
K-800x	930	2.9	2.18
K-1100	930	3.1	2.20
Mitsubishi Kasei			
K133	440	2.4	2.08
K135	540	2.6	2.10
K137	640	2.7	2.11
K139	740	2.8	2.12
K321	180	2.0	1.90
Nippon graphite fiber			
YS-50A	520	3.8	2.09
YS-60	590	3.5	2.12
YS-70A	720	3.6	2.14
YS-80	785	3.5	2.15
Isotropic pitch Kureha			
T101F	33.0	0.80	1.81
T201F	33.0	0.70	1.57

Les fibres aramides



Structure chimique du PA 6.6


$$+ \overset{c}{\leftarrow} \overset{c}{\leftarrow} \underbrace{- \overset{c}{\leftarrow} \overset{h}{\leftarrow} \underbrace{- \overset{h}{\rightarrow} \overset{$$

Structure chimique du Kevlar®

Structure chimique du Nomex®

Le Kevlar® est un PA aromatique découvert en 1972 par DuPont II est hautement cristallin et insoluble. Il fond à plus de 500°C

Le Nomex® diffère du Kevlar® par l'existence des groupes meta-phénylène à la place des groupes para-phénylène

Fabrication

- -extrusion et filage du polymère en solution
- traitement thermique pour augmenter le degré de cristallinité et l'orientation

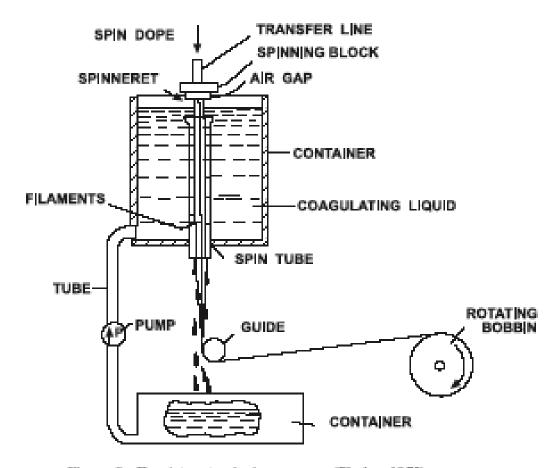
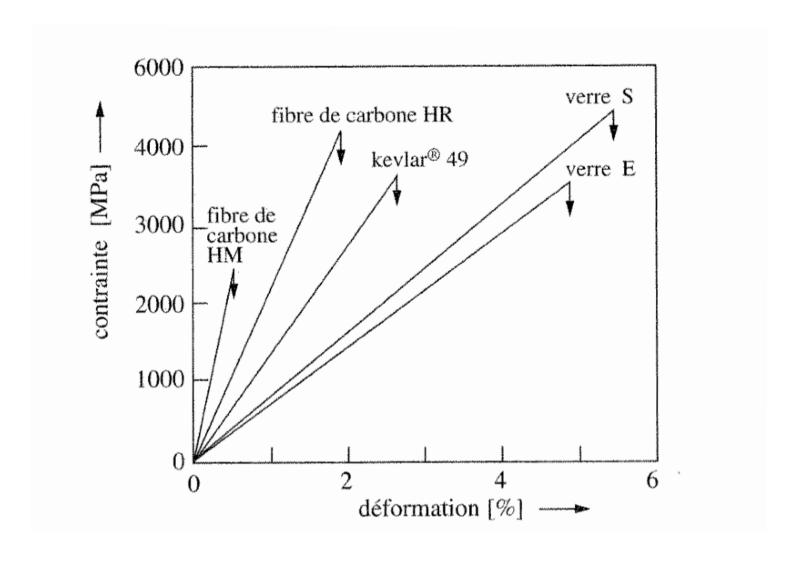


Figure 8 Dry-jet wet spinning process (Blades, 1973).

Propriétés

Propriétés: Module 60 à 125 GPa

- Résistance: 2.7 à 3 GPa


- élongation: 2.5 à 3.5 %

-Problèmes: Résistance aux UV, compression.

Product type	Kevlar	Kevlar	Kevlar 49	Kevlar 68	Kevlar 119	Kevlar 129	Kevlar KM2
Denier per filament	1.5, 2.25	1.5, 2.25	1.5	2.25	1.5, 2.25	1.5	1.5
Filament diameter	-	-			-		
(mm)	0.012, 0.015	0.012, 0.015	0.012	0.012	0.012, 0.015	0.012	0.012
Density (g cm ⁻³)	1.44	1.44	1.45	1.44	1.44	1.45	1.44
Tenacity							
(g den ⁻¹)	23	23	23	23.7	24	26.5	26
(GPa)	2.9	2.9	2.9	3.0	3.1	3.4	3.3
Elongation (%)	3.6	3.6	2.8	3.3	4.4	3.3	4.2
Tensile modulus							
(g den ⁻¹)	550	550	950	780	430	780	500
(GPa)	70	70	135	99	55	99	64
Moisture regain (%)	5–7	5–7	3-4	4-6	5-7	4-6	5–7

Comparaison carbone-verre-aramide

Les fibres céramiques

Exemple: Alumine

Nextel 312®: Silica-alumina fibers

Al2O3 62% / SiO2 24% / B2O3 14%

Nextel 610: Alumina fiber

These fibers offer:

- Good chemical resistance

- Good electric properties (e = 5,2 à 9.3 GHz)

- Low porosity

- properties: 312: E=138Gpa, σ_{max} =1725 Mpa

610: E=388Gpa, σ_{max} =3909 MPa

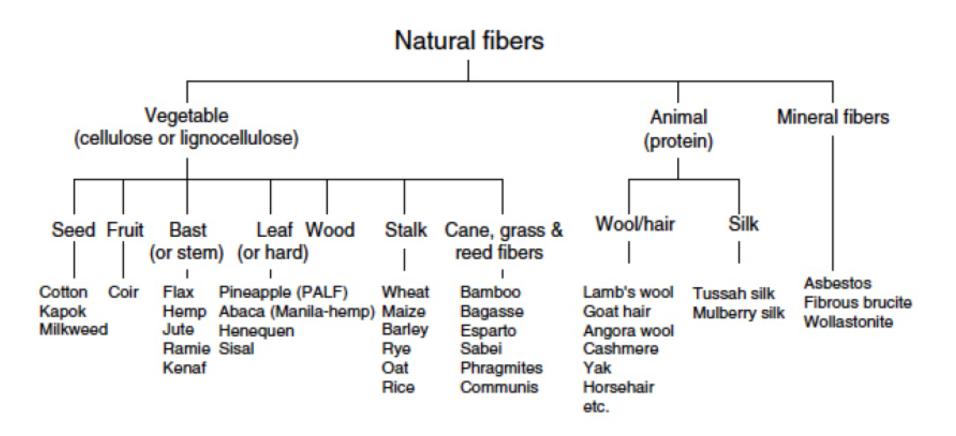
Main drawback: Very high cost: $525 CHF/Kg = 840 \times E-Glass$

Les fibres naturelles

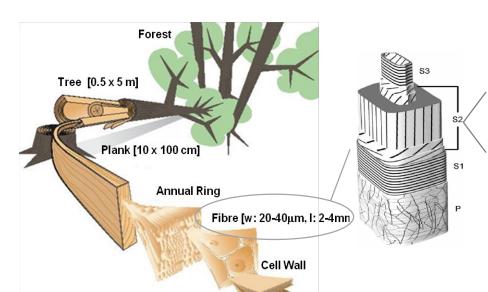
Chanvre, lin, jute, sisal, etc...

Abaca des Philippines

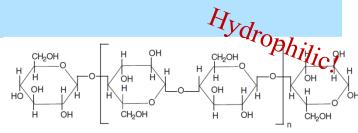
Noix de coco...


Stöckli

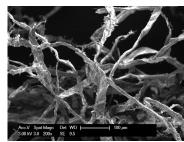
Mercedes A200

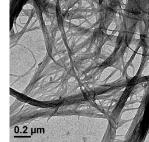


Fabrication



Fabrication


Microfibrils [w: 10 nm, I: few μm]
Crystalline region [I>500nm]


Microfibrils: Cellulose

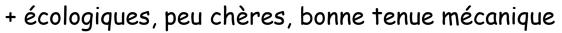
Matrix: Hemicellulose and Lignin

Wood Fiber (WF)

Microfibrillated cellulose (MFC)

* adapted from Neagu et al., PhD Thesis, KTI	H, 2006
and Mathew et al., 2005	

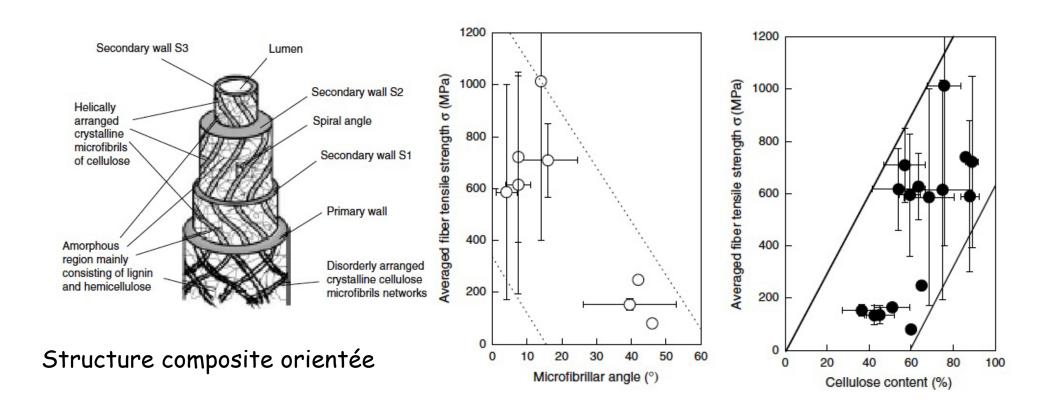
Molecule [< 1 nm]


Length l	2 to 4 mm	Few μm
Diameter d	20 to 60 μm	10-100 nm
Aspect ratio (l/d)	~ 80	~ 100
Young's Modulus (GPa)	40	70-130 (?)

Propriétés

Fiber	Density (g cm ⁻³)	Diameter (µm)	Tensile Strength (MPa)	Young's Modulus (GPa)	Elongation at Break (%)
Flax	1.5	40-600	345-1500	27.6	2.7-3.2
Hemp	1.47	25-500	690	70	1.6
Jute	1.3-1.49	25-200	393-800	13-26.5	1.16-1.5
Kenaf			930	53	1.6
Ramie	1.55	_	400-938	61.4-128	1.2 - 3.8
Nettle			650	38	1.7
Sisal	1.45	50-200	468-700	9.4-22	3–7
Henequen					
PALF		20-80	413-1627	34.5-82.5	1.6
Abaca			430-760		
Oil palm EFB	0.7 - 1.55	150-500	248	3.2	25
Oil palm mesocarp			80	0.5	17
Cotton	1.5-1.6	12-38	287-800	5.5-12.6	7–8
Coir	1.15-1.46	100-460	131-220	4-6	15-40
E-glass	2.55	<17	3400	73	2.5
Kevlar	1.44		3000	60	2.5-3.7
Carbon	1.78	5–7	3400a-4800b	240b-425a	1.4-1.8

a Ultra high modulus carbon fibers.



⁻ dispersion des propriétés, mise en oeuvre

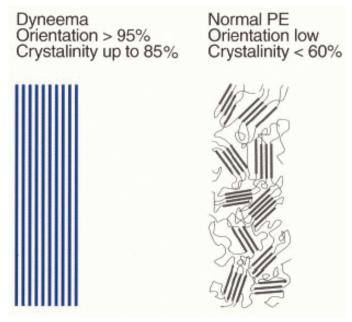
b Ultra high tenacity carbon fibers.

Propriétés

Thomas Lampke, A.B., Supriya Mishra, Natural Fibres, Biopolymers, and Biocomposites, Cambridge press, Editor 2005.

D'autres fibres...

<u>UHMW-PE</u>


(Ultra High Molecular Weight PE) Modulus: 85-98 Gpa, σ_{max} =2.5-3.1 GPa Spectra® melting point at Dyneema® 150° C

Exotic Organic Fibers

Zylon® [PBO (poly(p-phenylene-2,6-benzobisoxazole))]

Vectran® [LCP (Liquid Crystal Polymer)]

And other fibers?

Normal polyethylene has a low orientation and crystallinity generally below 60%; Dyneema Purity has an orientation of approx. 98% and crystallinity up to 85%.

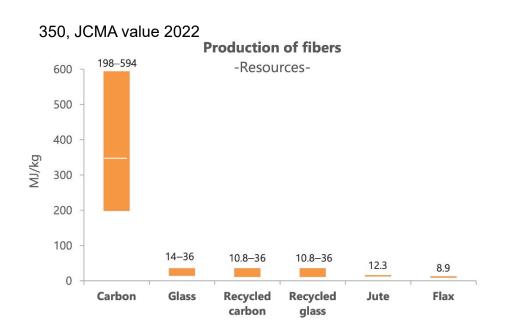
	Density	Tensile strength	Tensile modulus	Moisture regain	Thermal expansion	Dielect	Dielectric cst Dielect		Chemical
	g/cm ³	MPa	GPa	%	10 ⁻⁶ .K ⁻¹	100KHz	1MHz	strength KV/mm	resistance
Zylon-HM	1.56	5800	280	0.6	-6	3	2.1	970	Very good
Vectran	1.4	2800-3200	65-71	< 0,1	-4.8	3,3 à	1 KHz	-	Very good

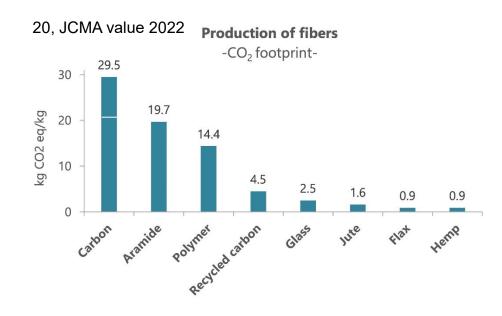
Basalt (basaltex)

Progression des fibres synthétiques

Fibre Type & Initial producer	Repeat Unit in the Macromolecule	Maximum Elastic Modulus (GPa)	Melting pt. or decomp. temp. °C
Polyamide 6 [Nylon 6] I.G.Farben	-{NH−CH ₂ −−CH ₂ −−CH ₂ −−CH ₂ −−CO-}		230
Polyamide 6/6 [Nylon 6.6] Du Pont	=	~5	260
Polyethylene terephthalate [Polyester] ICI		~15	260
Poly(m- phenylenediami ne- isophthalamide) Nomex Du Pont	[-N - CO	17	400
Poly- paraphenylene/3 ,4-diphenylether terephthalamide [Technora] Teijin	+IDN NIRXC CO + - (IDN - CO) + O - O - O - O - O - O - O - O - O - O	70	500
Poly(p- phenylene terephthalamide) [Kevlar] Du Pont	[HNCOCO]	135	550
Poly(p- phenylene benzobisoxqazol e) PBO [Zylon] Toyobo	±⟨_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	280	650
Poly{2,6-dimidazo [4.5-b:4'.5-e] pyridinylene-1,4 (2,5-dihydroxy) phenylene} (PIPD) M5 AKZO	OH OH OH OH	330	650

Accroissement de la rigidité des unités macromoléculaires


Sélection

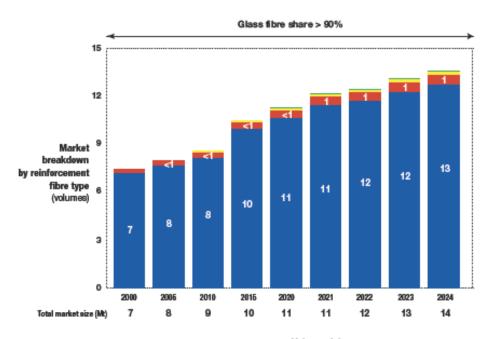

Fibres	Avantages	Inconvénients
Verre	+++ prix ++ rapport performances mécaniques/prix ++ résistance spécifique ++ caractéristiques diélectriques ++ résistance élevée à T ++ conductivité et dilatation thermiques faibles	vieillissement au contact de l'eau résistance aux acides et bases densité module
Carbone	++++ caractéristiques mécaniques +++ inertie chimique ++ densité ++ tenue en température ++ faible coefficient d'expansion thermique ++ bonne conductibilité thermique	résistance aux chocs résistance à l'abrasion Corrosion galvanique au contact des métaux - prix élevé
Aramide (Kevlar®)	++++ résistance aux chocs ++ résistance à la traction ++ faible densité ++ dilatation thermique nulle ++ résistance a la fatigue et à l'abrasion ++comportement chimique	prix élevé usinabilité tenue en compression prise d'humidité importante adhérence à la matrice - décomposition à 400°C
Polyéthylène (Dyneema®)	++++ résistance aux chocs +++ faible densité +++ comportement chimique ++ résistance à la traction	point de fusion à 150° adhérence avec la matrice - usinabilité

Sélection

Ressources nécessaires et impact CO2 d'un kilo de fibres

Sources: Ecoinvent database; JEC observer 2021: Current trends in the global composite industry 2020-2050; Niels de Beus, Michael Carus, Martha Barth. 2019: Carbon footprint and sustainability of different natural fibres for biocomposite and insulation material, Teijin website, Dyneema website, JCMA website

Critères de choix des fibres


Cahier des charges du produit à réaliser:

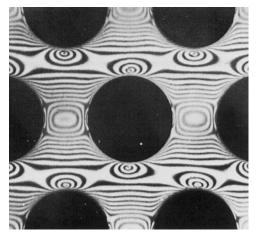
- compromis rigidité/masse/coût
- élongation à rupture
- température d'utilisation
- résistance à l'impact, en compression, en cisaillement...
- résistance chimique, aux UV, corrosion
- conductivité électrique, thermique
- coefficient d'expansion thermique de la pièce
- compatibilité avec la matrice choisie
- choix de la technique de mise en oeuvre

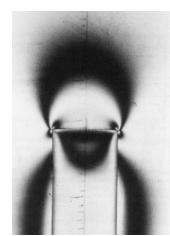
Marchés

Evolution of the composites market - By fibre type - 2000-2024 - In volume - Base case

Notes: (1) High performance sports goods like anow boards, sall cloths, protective gloves & helmats...; (2) Bamboo, hemp, cotton, kenaf, jute, flax, occonut, banana leaf fibres, wheat straw, not including wood-plassic compositios.

Sources: Lochrid, Interview, Estin & Co arrighes and estimates.




Les matrices polymères

Rôle de la matrice: assurer le transfert et la répartition des charges (contraintes) entre les fibres

·Matrice idéale:

- Faible viscosité (pour imprégner facilement les fibres)
- Propriétés mécaniques élevées
- Bonne résistance thermique
- Bonne résistance chimique et à l'humidité
- Adhésion élevée aux fibres
- Faible retrait à la mise en œuvre
- Résistance au feu et à l'émission des gaz toxiques
- Bas prix

Visualisation des isochromes (lignes d'isocontraintes) dans une matrice polymère enrobant des fibres

Les matrices polymères

Thermodurcis

- + Résines liquides à T ambiante
- + Facilité de mise en oeuvre (EP, UP)
- Avantages + Durcissement entre 5 et 180C (EP)
 - + Prix raisonnable
 - + Grande variété de formulation possibles
 - + Bonne adhésion aux fibres
 - + Amorphe
- Inconvénients - Volatilité, toxicité, allergies
 - Résistance à l'humidité
 - Résistance aux chocs
 - Controle de la réaction chimique

Thermoplastiques

- + Mise en oeuvre rapide, par élévation de T
- + Procédés de mise en ouvre des thermoplastiques utilisable avec les fibres courtes
- + Bonne résistance à l'humidité
- + Recyclage aisé

Inconvénients

Avantages

- Souvent peu résistantes à la T
- Retrait au moulage (matrices s- c)
- Mauvaise résistance chimique
- Adhésion aux fibres souvent problématique
- Propriétés mécaniques faibles, fluage

Vitrimères: Nouvelles résines (depuis 2010 environ), basée sur une chimie de reseaux covalents adaptatifs (CAN), par exemple entre alcool et ester, qui sont réticulés mais peuvent être reformés en chauffant, et mieux recyclés.

Les matrices thermodurcissables

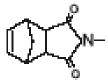
Epoxy resin

(oxirane)

Prix: environ quelques francs du kg Module: E=quelques GPa

Unsaturated Polyesters

(C= C double bond)

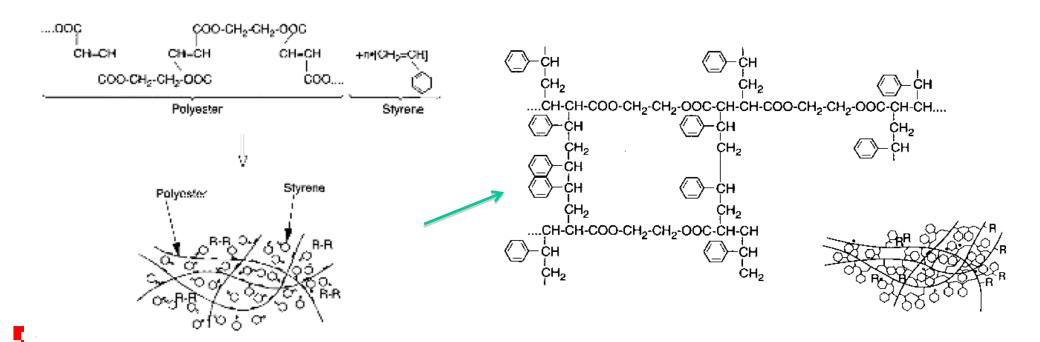

Maleimides

(C= C double bond)

Nadimides

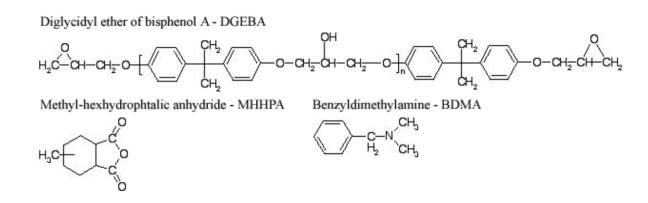
(C= C double bond)

Ethynyl terminated resin


(triple-bond)

Les matrices thermodurcissables

Polyesters insaturés : couramment utilisés (coques, grands panneaux, automobile).


Préparation: en solution dans le styrène, ajout de catalyseur et d'inhibiteurs de réaction.

Les matrices thermodurcissables

Epoxydes: Découvertes en Suisse par Ciba en 1943.

Préparation: monomère et durcisseur (amine ou anhydride) -> réseau tridimensionnel, insoluble et infusible

Les matrices thermoplastiques

Thermoplastiques linéaires, amorphes ou semi-cristallins

Polyamide (PA)	H O
Polypropylène (PP)	CH ₂ CH Me
Poly(2,6-diméthyl-1,4-phénylène éther) (PPE) amorphe	Me ————————————————————————————————————
Poly(p-phénylène-éther-sulfone) (PES) amorphe	
Polyétherimide (PEI) amorphe OC OC OC OC	$\begin{array}{c} \begin{array}{c} Me \\ C \\ Me \end{array} \\ \begin{array}{c} OC \\ OC \end{array}$
Poly(p-phénylène-éther-éther-cétone) (PEEK) semicristallin	-o-{\bigce_o-\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot
Poly(sulfure de p-phénylène) (PPS) semicristallin	-\(\sigma_{\text{summark}} - \text{S} -
Polycarbonate de bisphénol-A (PC) amorphe	-O-CH ₃ -C-C-C-O-CO-

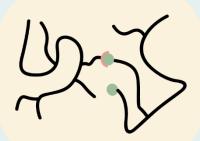
Prix et températures de transition

Table 1 Thermoplastic selling prices and transition temperatures.

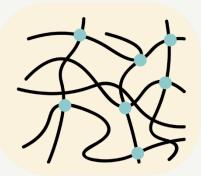
		Pr	ices	Transition temperatures	
Type	Abbreviation	(\$1b ⁻¹)	\$lb ⁻¹) (\$kg ⁻¹)	T _g (°C)	T _m (°C)
Polyolefins					
Polyethylene, low-density	LDPE	0.41	0.90	- 90	120
Polyethylene, high-density	HDPE	0.39	0.86	- 30	135
Polypropylene	PP	0.28	0.62	-20	165
Styrenics					
Polystyrene, "crystal"	PS	0.39	0.86	100	am
Polystyrene, impact mod.	HIPS	0.44	0.97	100	am
Acrylonitrile/butadiene/styrene	ABS	0.90	1.98	100	am
Styrene/acrylonitrile	SAN	0.87	1.91	110	am
Styrene/acrylic	S/A	1.10	2.42	100	am
Styrene/maleic anhydride	SMA	1.13	2.48	115	am
Vinyls					
Polyvinyl chloride	PVC	0.37	0.82	85	am
Chlorinated PVC	CPVC	1.19	2.62	100	am
Acrylics					
Polymethylmethacrylate	PMMA	0.85	1.87	100	am
PVC/acrylic blend	PVC/MA	1.50	3.31	90	am
Fluoropolymers					
Polychlorotrifluoroethylene	CTFE	45.00	99.18	30	235
Polytetrafluoroethylene	PTFE	7.00	15.43	27	325
Polyvinylidene fluoride	PVDF	6.75	14.88	- 30	170
Polyesters					
Polyethylene terephthalate	PET	0.54	1.19	80	250
Polyester, PETG	PETG	0.98	2.16	80	am
Polybutylene terphthalate	PBT	1.45	3.20		235
Polyarylate	PAR	2.40	5.29	190	am
Liquid crystal polyester	LCP	12.00	26.45		400

Prix et températures de transition

Polyamides (nylons)					
Nylon type 6	N6	1.30	2.87	60	220
Nylon type 66	N66	1.40	3.07	70	260
Nylon type 11	N11	3.35	7.38	- 70	185
Nylon type 12	N12	3.30	7.26		190
Polyphthalamide	PPA				310
Polyamideimide	PAI	26.10	57.52	275	am
Polyimides					
Polyetherimide	PEI	6.41	14.13	215	am
Polyimide	PI			320	385
Polyethers					
Polyacetal	POM	1.25	2.76	-75	175
Polycarbonate	PC	1.55	3.42	150	am
Polyphenylene oxide blend	PPO	1.80	3.97	110-190	am
Polyaryletherketone	PAEK	29.50	65.02	138	320-380
Polyetheretherketone	PEEK	33.00	72.73	145	335
Sulfur-containing polymers					
Polyphenylene sulfide	PPS			90	285
Polysulfone	PSF	4.40	9.70	190	am
Polyethersulfone	PES	4.40	9.70	225	am
Polyarylsulfone	PAS	4.40	9.70	220	am
Additional thermoplastics					
Acrylonitrile copolymer	ANC	1.25	2.76	95	am
Polyurethane	TPU	2.10	4.63	,,,	am
2 0.7 0. 0		2.10			*****


Vitrimères

Thermoplastics


- No crosslinks
- Reprocessable
- Recyclable
- Viscosity drop when heated
- Low thermal/chemical resistance

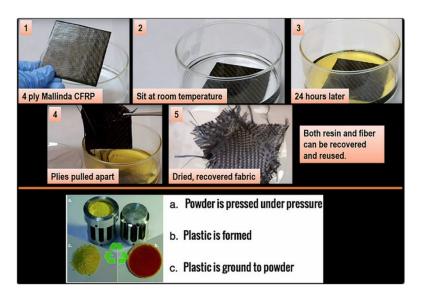
Vitrimers

- Dynamic crosslinked network
- Poor thermal/chemical resistance
- Malleable when heated
- Reprocessable
- Recyclable

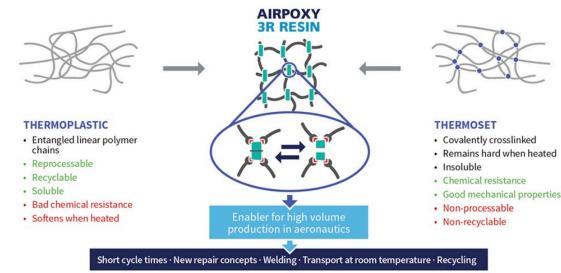

Thermosets

- Crosslinked network
- Good mechanical properties
- High thermal/chemical resistance
- Non-reprocessable
- Non-recyclable
- Often low viscosity

Vitrimères

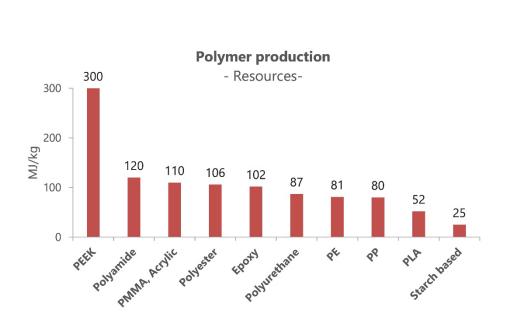


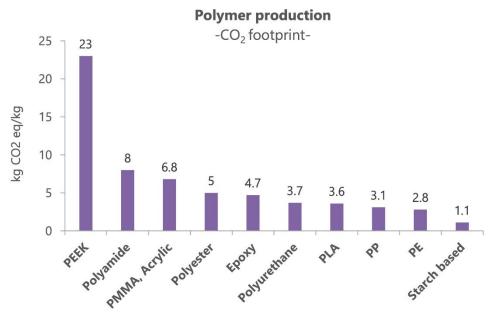
Beaucoup de possibilités, en fort développement, grace au potential de recyclage et de remise en forme.



Vitrimères

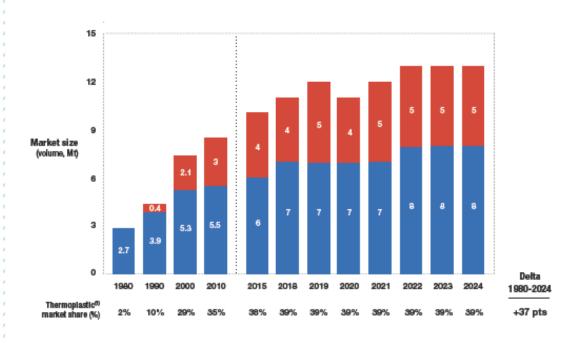
Exemple commercial: Mallinda


Airpoxy



Sélection

Ressources nécessaires et impact CO2 d'un kilo de matrice



Marchés

Evolution of composites market - Thermoplastic market share - 1980-2024 - In volume - Base case

Thermoplastic

11%

- · Main applications include automotive, aerospace...
- · High flexibility, high environmental tolerance, light weighting, lower cost and ease of recycling.
- · Main process of injection molding.

Thermoset

3%

Notes: (1) Composites including thermoplestics.
Sources: Luciniei, interviews, Ealis & Co assiyees and estimates.

Les matrices: exemples d'applications

Thermodurcis

Matrice	Applications	propriétés
Epoxydes (EP)	Avionique, sport et loisirs (skis, tennis, voile, casques, F1), circuits imprimés, robots	Excellente adhésion, bonnes propriétés mécaniques et chimiques
Polyesters (UP)	Génie civil, architecture, voile (loisir)	Bon marché, faible viscosité, bonne résistance chimique
Phénoliques (PF)	Connectique, mécanique, composites HT, imprégnation de noyau pour sandwich	Fragile, résistant à la T
Polyimides (PI)	Connectique, mécanique, composites HT (200°C)	Fragile, difficile à mettre en œuvre, résistant à la T

Thermoplastes

Polyétheréthercétone (PEEK)	Avionique, pièces technique (palliers), composites HT	S-C, Tf : 334°C, T _{max} : 240°C Disponible sous forme de préimprégnés
Polysulfone (PSU)	Connecteurs, pièces mécaniques, microtechnique	Amorphe, T _g : 320°C, T _{max} : 220°C
Polysulphure de phénylène (PPS)	Mécanique, microtechnique	S-C, Tf : 288°C, T _{max} : 240°C
Polyamide (PA)	Dans tous les domaines	S-C, Tf: 176-220°C, T _{max} : 110°C
Polyester (PET, PBT)	Mécanique, microtechnique	S-C, T _g : 70°C, T _{max} : 110°C
Polycarbonate (PC)	Mécanique, microtechnique	Amorphe, T _g : 141°C, T _{max} : 120°C
Polypropylène (PP)	Automobile (pare-chocs, pièces de carrosserie), microtechnique	S-C, Tf: 140°C, T _{max} : 90°C

