Problem Set 2 (Graded) -Due Tuesday, October 10, before class starts
For the Exercise Sessions on September 26 and Oct 3
\qquad

Last name	First name	SCIPER Nr	Points

Problem 1: Axiomatic definition of entropy

Let $\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ be such that $p_{i} \geq 0$ for $i=1, \ldots, m$ and $\sum_{i} p_{i}=1$. Let

$$
\begin{equation*}
H\left(p_{1}, \ldots, p_{m}\right)=-\sum_{i} p_{i} \log p_{i} \tag{1}
\end{equation*}
$$

be the entropy of $\left(p_{1}, p_{2}, \ldots, p_{m}\right)$.
(a) (Grouping property) Prove that

$$
H\left(p_{1}, p_{2}, p_{3}, \ldots, p_{m}\right)=H\left(p_{1}+p_{2}, p_{3}, \ldots, p_{m}\right)+\left(p_{1}+p_{2}\right) H\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right) .
$$

The above property models the fact that the uncertainty in choosing among m objects should be equal to the uncertainty in first choosing a subgroup of the objects, and then choosing an object in the selected subgroup.
(b) Prove that if a function F of probability vectors $\left(p_{1}, p_{2}, \ldots, p_{m}\right), m \geq 2$, is such that

1. $F\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ is continuous in the p_{i} 's,
2. $F\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ satisfies the grouping property (a),
3. $F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)=\log m$,
then F must be equal to the entropy (1).
Hint: Suppose that the $p_{i}^{\prime} s$ are rational, i.e., $p_{i}=\frac{m_{i}}{m}$ for some positive integers $\left\{m_{i}\right\}_{i=1, \ldots, k}$. Show using (a) recursively that

$$
F\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)=F\left(\frac{m_{1}}{m}, \ldots, \frac{m_{k}}{m}\right)+\sum_{i} \frac{m_{i}}{m} F\left(\frac{1}{m_{i}}, \ldots, \frac{1}{m_{i}}\right)
$$

Problem 2: Entropy and Geometry

Suppose X, Y and Z are random variables.
(a) Show that $H(X)+H(Y)+H(Z) \geq \frac{1}{2}[H(X, Y)+H(Y, Z)+H(Z, X)]$.
(b) Show that $H(X, Y)+H(Y, Z) \geq H(X, Y, Z)+H(Y)$.
(c) Show that

$$
2[H(X, Y)+H(Y, Z)+H(Z, X)] \geq 3 H(X, Y, Z)+H(X)+H(Y)+H(Z) .
$$

(d) Show that $H(X, Y)+H(Y, Z)+H(Z, X) \geq 2 H(X, Y, Z)$.
(e) Suppose n points in three dimensions are arranged so that their their projections to the $x y, y z$ and $z x$ planes give $n_{x y}, n_{y z}$ and $n_{z x}$ points. Clearly $n_{x y} \leq n, n_{y z} \leq n, n_{z x} \leq n$. Use part (d) show that

$$
n_{x y} n_{y z} n_{z x} \geq n^{2} .
$$

Problem 3: Conditional KL divergence

We saw in class that a probability kernel $P_{Y \mid X}: \mathcal{X} \rightarrow \mathcal{Y}$ is a matrix $P_{Y \mid X}=P_{Y \mid X}(y \mid x): x \in \mathcal{X}, y \in \mathcal{Y}$ such that $P_{Y \mid X}(y \mid x) \geq 0$, and for each $x \in \mathcal{X}, \sum_{y} P_{Y \mid X}(y \mid x)=1$. Let $P_{X} \in \Pi(\mathcal{X})$ be a probability distribution on \mathcal{X}. We define the conditional $K L$ divergence between two probability kernels $P_{Y \mid X}: \mathcal{X} \rightarrow \mathcal{Y}$ and $Q_{Y \mid X}: \mathcal{X} \rightarrow \mathcal{Y}$ given P_{X} to be

$$
D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right) \triangleq \sum_{x \in \mathcal{X}} P_{X}(x) D\left(P_{Y \mid X}(\cdot \mid x) \| Q_{Y \mid X}(\cdot \mid x)\right)
$$

where for every $x, D\left(P_{Y \mid X}(\cdot \mid x) \| Q_{Y \mid X}(\cdot \mid x)\right)$ is the standard KL divergence between the two distributions $P_{Y \mid X}(\cdot \mid x)$ and $Q_{Y \mid X}(\cdot \mid x)$ over \mathcal{Y}.
(a) (Chain rule of the KL divergence) Show that

$$
D\left(P_{X, Y} \| Q_{X, Y}\right)=D\left(P_{X} \| Q_{X}\right)+D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)
$$

where $P_{X, Y}$ and $Q_{X, Y}$ are two joint distributions on $\mathcal{X} \times \mathcal{Y}$ such that $P_{X, Y}(x, y)=P_{X}(x) P_{Y \mid X}(y \mid x)$ and $Q_{X, Y}(x, y)=Q_{X}(x) Q_{Y \mid X}(y \mid x)$.
(b) Using (a), show that

$$
D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)=D\left(P_{X, Y} \| Q_{X, Y}\right)
$$

where $P_{X, Y}(x, y)=P_{X}(x) P_{Y \mid X}(y \mid x)$ and $Q_{X, Y}(x, y)=P_{X}(x) Q_{Y \mid X}(y \mid x)$.
(c) (Conditioning increases divergence) Using (b) and the Data Processing Inequality seen in class, show that

$$
D\left(P_{Y} \| Q_{Y}\right) \leq D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)
$$

where $P_{Y}(y)=\sum_{x \in \mathcal{X}} P_{X}(x) P_{Y \mid X}(y \mid x)$ and $Q_{Y}(y)=\sum_{x \in \mathcal{X}} P_{X}(x) Q_{Y \mid X}(y \mid x)$.

Problem 4: Variational characterization of mutual information

Let X and Y be two random variables over finite alphabets \mathcal{X} and \mathcal{Y} with joint probability distribution $P_{X Y}$, and let $I(X ; Y)$ be their mutual information.
(a) Show that for every function $f(X, Y)$ such that $E_{P_{X} P_{Y}}\left[e^{f(X, Y)}\right]$ is finite,

$$
I(X ; Y) \geq \mathbb{E}_{P_{X Y}}[f(X, Y)]-\mathbb{E}_{P_{Y}}\left[\log \mathbb{E}_{P_{X}}\left[e^{f(X, Y)}\right]\right] .
$$

(b) Show that there is a function $\tilde{f}(X, Y)$ such that $E_{P_{X} P_{Y}}\left[e^{f(X, Y)}\right]$ is finite and

$$
I(X ; Y)=\mathbb{E}_{P_{X Y}}[\tilde{f}(X, Y)]-\mathbb{E}_{P_{Y}}\left[\log \mathbb{E}_{P_{X}}\left[e^{\tilde{f}(X, Y)}\right]\right] .
$$

(c) Conclude that

$$
I(X ; Y)=\sup _{f} \mathbb{E}_{P_{X Y}}[f(X, Y)]-\mathbb{E}_{P_{Y}}\left[\log \mathbb{E}_{P_{X}}\left[e^{f(X, Y)}\right]\right]
$$

where the sup is over all functions f such that $E_{P_{X} P_{Y}}\left[e^{f(X, Y)}\right]$ is finite.

Problem 5: f-divergences

Suppose f is a convex function defined on $(0, \infty)$ with $f(1)=0$. Define the f-divergence of a distribution P from a distribution Q as

$$
D_{f}(P \| Q) \triangleq \sum_{x} Q(x) f(P(x) / Q(x))
$$

In the sum above we take $f(0):=\lim _{t \rightarrow 0} f(t), 0 f(0 / 0):=0$, and $0 f(a / 0):=\lim _{t \rightarrow 0} t f(a / t)=$ $a \lim _{t \rightarrow 0} t f(1 / t)$.
(a) Show that the following basic properties hold:

1. $D_{f_{1}+f_{2}}(P \| Q)=D_{f_{1}}(P \| Q)+D_{f_{2}}(P \| Q)$
2. $D_{f}(P \| P)=0$
3. $D_{f}(P \| Q) \geq 0$
(b) (Monotonicity) Show that $D_{f}\left(P_{X Y} \| Q_{X Y}\right) \geq D_{f}\left(P_{X} \| Q_{X}\right)$.
(c) (Data processing inequality) Show that for any probability kernel $W(y \mid x)$ from \mathcal{X} to \mathcal{Y}, and any two distributions P_{X} and Q_{X} on \mathcal{X}

$$
D_{f}\left(P_{X} \| Q_{X}\right) \geq D_{f}\left(P_{Y} \| Q_{Y}\right)
$$

where P_{Y} and Q_{Y} are probability distributions on \mathcal{Y} given by $P_{Y}(y)=\sum_{x} P_{X}(x) W(y \mid x)$ and $Q_{Y}(y)=\sum_{x} Q_{X}(x) W(y \mid x)$.
(d) Show that if f is strictly convex in 1 , then $D_{f}(P \| Q)=0$ if and only if $P=Q$.

Problem 6: Entropy and combinatorics

Let $n \geq 1$ and fix some $0 \leq k \leq n$. Let $p=\frac{k}{n}$ and let $T_{p}^{n} \subset\{0,1\}^{n}$ be the set of all binary sequences with exactly $n p$ ones.
(a) Show that

$$
\log \left|T_{p}^{n}\right|=n h(p)+O(\log n)
$$

where $h(p)=-p \log p-(1-p) \log (1-p)$ is the binary entropy function. Hint: Stirling's approximation states that for every $n \geq 1$,

$$
e^{\frac{1}{12 n+1}} \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \leq n!\leq e^{\frac{1}{12 n}} \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

(b) Let $Q^{n}=\operatorname{Bernoulli}(q)^{n}$ be the i.i.d. Bernoulli distribution on $\{0,1\}^{n}$. Show that

$$
\log Q^{n}\left[T_{p}^{n}\right]=-n d(p \| q)+O(\log n)
$$

where $d(p \| q)=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q}$ is the binary KL divergence.

