Problem Set 2 (Graded) — Due Tuesday, October 10, before class starts For the Exercise Sessions on September 26 and Oct 3

Last name	First name	SCIPER Nr	Points

Problem 1: Axiomatic definition of entropy

Let (p_1, p_2, \ldots, p_m) be such that $p_i \ge 0$ for $i = 1, \ldots, m$ and $\sum_i p_i = 1$. Let

$$H(p_1, \dots, p_m) = -\sum_i p_i \log p_i \tag{1}$$

be the entropy of (p_1, p_2, \ldots, p_m) .

(a) (Grouping property) Prove that

$$H(p_1, p_2, p_3, \dots, p_m) = H(p_1 + p_2, p_3, \dots, p_m) + (p_1 + p_2)H\left(\frac{p_1}{p_1 + p_2}, \frac{p_2}{p_1 + p_2}\right)$$

The above property models the fact that the uncertainty in choosing among m objects should be equal to the uncertainty in first choosing a subgroup of the objects, and then choosing an object in the selected subgroup.

- (b) Prove that if a function F of probability vectors $(p_1, p_2, \ldots, p_m), m \ge 2$, is such that
 - 1. $F(p_1, p_2, \ldots, p_m)$ is continuous in the p_i 's,
 - 2. $F(p_1, p_2, \ldots, p_m)$ satisfies the grouping property (a),
 - 3. $F(\frac{1}{m},\ldots,\frac{1}{m}) = \log m$,

then F must be equal to the entropy (1).

Hint: Suppose that the p'_i s are rational, i.e., $p_i = \frac{m_i}{m}$ for some positive integers $\{m_i\}_{i=1,...,k}$. Show using (a) recursively that

$$F\left(\frac{1}{m},\ldots,\frac{1}{m}\right) = F\left(\frac{m_1}{m},\ldots,\frac{m_k}{m}\right) + \sum_i \frac{m_i}{m} F\left(\frac{1}{m_i},\ldots,\frac{1}{m_i}\right).$$

Problem 2: Entropy and Geometry

Suppose X, Y and Z are random variables.

- (a) Show that $H(X) + H(Y) + H(Z) \ge \frac{1}{2} \left[H(X,Y) + H(Y,Z) + H(Z,X) \right].$
- (b) Show that $H(X, Y) + H(Y, Z) \ge H(X, Y, Z) + H(Y)$.

(c) Show that

$$2[H(X,Y) + H(Y,Z) + H(Z,X)] \ge 3H(X,Y,Z) + H(X) + H(Y) + H(Z).$$

- (d) Show that $H(X, Y) + H(Y, Z) + H(Z, X) \ge 2H(X, Y, Z)$.
- (e) Suppose n points in three dimensions are arranged so that their their projections to the xy, yz and zx planes give n_{xy} , n_{yz} and n_{zx} points. Clearly $n_{xy} \leq n$, $n_{yz} \leq n$, $n_{zx} \leq n$. Use part (d) show that

$$n_{xy}n_{yz}n_{zx} \ge n^2$$
.

Problem 3: Conditional KL divergence

We saw in class that a probability kernel $P_{Y|X} : \mathcal{X} \to \mathcal{Y}$ is a matrix $P_{Y|X} = P_{Y|X}(y|x) : x \in \mathcal{X}, y \in \mathcal{Y}$ such that $P_{Y|X}(y|x) \ge 0$, and for each $x \in \mathcal{X}, \sum_{y} P_{Y|X}(y|x) = 1$. Let $P_X \in \Pi(\mathcal{X})$ be a probability distribution on \mathcal{X} . We define the *conditional KL divergence* between two probability kernels $P_{Y|X} : \mathcal{X} \to \mathcal{Y}$ and $Q_{Y|X} : \mathcal{X} \to \mathcal{Y}$ given P_X to be

$$D(P_{Y|X} \| Q_{Y|X} | P_X) \triangleq \sum_{x \in \mathcal{X}} P_X(x) D(P_{Y|X}(\cdot | x) \| Q_{Y|X}(\cdot | x))$$

where for every x, $D(P_{Y|X}(\cdot|x) || Q_{Y|X}(\cdot|x))$ is the standard KL divergence between the two distributions $P_{Y|X}(\cdot|x)$ and $Q_{Y|X}(\cdot|x)$ over \mathcal{Y} .

(a) (Chain rule of the KL divergence) Show that

$$D(P_{X,Y} || Q_{X,Y}) = D(P_X || Q_X) + D(P_{Y|X} || Q_{Y|X} || P_X)$$

where $P_{X,Y}$ and $Q_{X,Y}$ are two joint distributions on $\mathcal{X} \times \mathcal{Y}$ such that $P_{X,Y}(x,y) = P_X(x)P_{Y|X}(y|x)$ and $Q_{X,Y}(x,y) = Q_X(x)Q_{Y|X}(y|x)$.

(b) Using (a), show that

$$D(P_{Y|X} || Q_{Y|X} || P_X) = D(P_{X,Y} || Q_{X,Y})$$

where $P_{X,Y}(x,y) = P_X(x) P_{Y|X}(y|x)$ and $Q_{X,Y}(x,y) = P_X(x) Q_{Y|X}(y|x)$.

(c) (Conditioning increases divergence) Using (b) and the Data Processing Inequality seen in class, show that

$$D(P_Y \| Q_Y) \le D(P_{Y|X} \| Q_{Y|X} | P_X)$$

where $P_Y(y) = \sum_{x \in \mathcal{X}} P_X(x) P_{Y|X}(y|x)$ and $Q_Y(y) = \sum_{x \in \mathcal{X}} P_X(x) Q_{Y|X}(y|x)$.

Problem 4: Variational characterization of mutual information

Let X and Y be two random variables over finite alphabets \mathcal{X} and \mathcal{Y} with joint probability distribution P_{XY} , and let I(X;Y) be their mutual information.

(a) Show that for every function f(X, Y) such that $E_{P_X P_Y}[e^{f(X,Y)}]$ is finite,

$$I(X;Y) \ge \mathbb{E}_{P_{XY}}[f(X,Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{f(X,Y)}]].$$

(b) Show that there is a function $\tilde{f}(X,Y)$ such that $E_{P_X P_Y}[e^{f(X,Y)}]$ is finite and

$$I(X;Y) = \mathbb{E}_{P_{XY}}[\tilde{f}(X,Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{f(X,Y)}]].$$

(c) Conclude that

$$I(X;Y) = \sup_{f} \mathbb{E}_{P_{XY}}[f(X,Y)] - \mathbb{E}_{P_Y}[\log \mathbb{E}_{P_X}[e^{f(X,Y)}]]$$

where the sup is over all functions f such that $E_{P_X P_Y}[e^{f(X,Y)}]$ is finite.

Problem 5: *f*-divergences

Suppose f is a convex function defined on $(0,\infty)$ with f(1) = 0. Define the f-divergence of a distribution P from a distribution Q as

$$D_f(P||Q) \triangleq \sum_x Q(x)f(P(x)/Q(x)).$$

In the sum above we take $f(0) := \lim_{t\to 0} f(t)$, 0f(0/0) := 0, and $0f(a/0) := \lim_{t\to 0} tf(a/t) = a \lim_{t\to 0} tf(1/t)$.

- (a) Show that the following basic properties hold:
 - 1. $D_{f_1+f_2}(P||Q) = D_{f_1}(P||Q) + D_{f_2}(P||Q)$
 - 2. $D_f(P \| P) = 0$
 - 3. $D_f(P \| Q) \ge 0$
- (b) (Monotonicity) Show that $D_f(P_{XY} || Q_{XY}) \ge D_f(P_X || Q_X)$.
- (c) (Data processing inequality) Show that for any probability kernel W(y|x) from \mathcal{X} to \mathcal{Y} , and any two distributions P_X and Q_X on \mathcal{X}

$$D_f(P_X \| Q_X) \ge D_f(P_Y \| Q_Y)$$

where P_Y and Q_Y are probability distributions on \mathcal{Y} given by $P_Y(y) = \sum_x P_X(x)W(y|x)$ and $Q_Y(y) = \sum_x Q_X(x)W(y|x)$.

(d) Show that if f is strictly convex in 1, then $D_f(P||Q) = 0$ if and only if P = Q.

Problem 6: Entropy and combinatorics

Let $n \ge 1$ and fix some $0 \le k \le n$. Let $p = \frac{k}{n}$ and let $T_p^n \subset \{0,1\}^n$ be the set of all binary sequences with exactly np ones.

(a) Show that

$$\log |T_p^n| = nh(p) + O(\log n)$$

where $h(p) = -p \log p - (1-p) \log(1-p)$ is the binary entropy function. Hint: Stirling's approximation states that for every $n \ge 1$,

$$e^{\frac{1}{12n+1}}\sqrt{2\pi n}\left(\frac{n}{e}\right)^n \le n! \le e^{\frac{1}{12n}}\sqrt{2\pi n}\left(\frac{n}{e}\right)^n$$

(b) Let $Q^n = \text{Bernoulli}(q)^n$ be the i.i.d. Bernoulli distribution on $\{0,1\}^n$. Show that

$$\log Q^n[T_p^n] = -nd(p||q) + O(\log n)$$

where $d(p||q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$ is the binary KL divergence.