
Foundations of Data Science Ecole Polytechnique Fédérale, Lausanne: Fall 2023
Gastpar & Urbanke September 26, 2023

Problem Set 2 (Graded) —Due Tuesday, October 10, before class starts
For the Exercise Sessions on September 26 and Oct 3

Last name First name SCIPER Nr Points

Problem 1: Axiomatic definition of entropy

Let (p1, p2, . . . , pm) be such that pi ≥ 0 for i = 1, . . . ,m and
∑

i pi = 1 . Let

H(p1, . . . , pm) = −
∑
i

pi log pi (1)

be the entropy of (p1, p2, . . . , pm) .

(a) (Grouping property) Prove that

H(p1, p2, p3, . . . , pm) = H(p1 + p2, p3, . . . , pm) + (p1 + p2)H

(
p1

p1 + p2
,

p2
p1 + p2

)
.

The above property models the fact that the uncertainty in choosing among m objects should be
equal to the uncertainty in first choosing a subgroup of the objects, and then choosing an object in
the selected subgroup.

(b) Prove that if a function F of probability vectors (p1, p2, . . . , pm) , m ≥ 2 , is such that

1. F (p1, p2, . . . , pm) is continuous in the pi ’s,

2. F (p1, p2, . . . , pm) satisfies the grouping property (a),

3. F ( 1
m , . . . ,

1
m ) = logm ,

then F must be equal to the entropy (1).

Hint: Suppose that the p′is are rational, i.e., pi = mi

m for some positive integers {mi}i=1,...,k .
Show using (a) recursively that

F

(
1

m
, . . . ,

1

m

)
= F

(m1

m
, . . . ,

mk

m

)
+
∑
i

mi

m
F

(
1

mi
, . . . ,

1

mi

)
.

Problem 2: Entropy and Geometry

Suppose X , Y and Z are random variables.

(a) Show that H(X) +H(Y ) +H(Z) ≥ 1
2

[
H(X,Y ) +H(Y,Z) +H(Z,X)

]
.

(b) Show that H(X,Y ) +H(Y, Z) ≥ H(X,Y, Z) +H(Y ) .
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(c) Show that

2
[
H(X,Y ) +H(Y,Z) +H(Z,X)

]
≥ 3H(X,Y, Z) +H(X) +H(Y ) +H(Z).

(d) Show that H(X,Y ) +H(Y, Z) +H(Z,X) ≥ 2H(X,Y, Z) .

(e) Suppose n points in three dimensions are arranged so that their their projections to the xy , yz
and zx planes give nxy , nyz and nzx points. Clearly nxy ≤ n , nyz ≤ n , nzx ≤ n . Use part (d)
show that

nxynyznzx ≥ n2.

Problem 3: Conditional KL divergence

We saw in class that a probability kernel PY |X : X → Y is a matrix PY |X = PY |X(y|x) : x ∈ X , y ∈ Y
such that PY |X(y|x) ≥ 0 , and for each x ∈ X ,

∑
y PY |X(y|x) = 1 . Let PX ∈ Π(X ) be a probability dis-

tribution on X . We define the conditional KL divergence between two probability kernels PY |X : X → Y
and QY |X : X → Y given PX to be

D(PY |X‖QY |X |PX) ,
∑
x∈X

PX(x)D(PY |X(·|x)‖QY |X(·|x))

where for every x , D(PY |X(·|x)‖QY |X(·|x)) is the standard KL divergence between the two distributions
PY |X(·|x) and QY |X(·|x) over Y .

(a) (Chain rule of the KL divergence) Show that

D(PX,Y ‖QX,Y ) = D(PX‖QX) +D(PY |X‖QY |X |PX)

where PX,Y and QX,Y are two joint distributions on X×Y such that PX,Y (x, y) = PX(x)PY |X(y|x)
and QX,Y (x, y) = QX(x)QY |X(y|x) .

(b) Using (a), show that
D(PY |X‖QY |X |PX) = D(PX,Y ‖QX,Y )

where PX,Y (x, y) = PX(x)PY |X(y|x) and QX,Y (x, y) = PX(x)QY |X(y|x) .

(c) (Conditioning increases divergence) Using (b) and the Data Processing Inequality seen in class,
show that

D(PY ‖QY ) ≤ D(PY |X‖QY |X |PX)

where PY (y) =
∑

x∈X PX(x)PY |X(y|x) and QY (y) =
∑

x∈X PX(x)QY |X(y|x) .

Problem 4: Variational characterization of mutual information

Let X and Y be two random variables over finite alphabets X and Y with joint probability distribution
PXY , and let I(X;Y ) be their mutual information.

(a) Show that for every function f(X,Y ) such that EPXPY
[ef(X,Y )] is finite,

I(X;Y ) ≥ EPXY
[f(X,Y )]− EPY

[logEPX
[ef(X,Y )]].

(b) Show that there is a function f̃(X,Y ) such that EPXPY
[ef(X,Y )] is finite and

I(X;Y ) = EPXY
[f̃(X,Y )]− EPY

[logEPX
[ef̃(X,Y )]].

(c) Conclude that
I(X;Y ) = sup

f
EPXY

[f(X,Y )]− EPY
[logEPX

[ef(X,Y )]]

where the sup is over all functions f such that EPXPY
[ef(X,Y )] is finite.
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Problem 5: f -divergences

Suppose f is a convex function defined on (0,∞) with f(1) = 0 . Define the f -divergence of a distri-
bution P from a distribution Q as

Df (P‖Q) ,
∑
x

Q(x)f(P (x)/Q(x)).

In the sum above we take f(0) := limt→0 f(t) , 0f(0/0) := 0 , and 0f(a/0) := limt→0 tf(a/t) =
a limt→0 tf(1/t) .

(a) Show that the following basic properties hold:

1. Df1+f2(P‖Q) = Df1(P‖Q) +Df2(P‖Q)

2. Df (P‖P ) = 0

3. Df (P‖Q) ≥ 0

(b) (Monotonicity) Show that Df (PXY ‖QXY ) ≥ Df (PX‖QX) .

(c) (Data processing inequality) Show that for any probability kernel W (y|x) from X to Y , and any
two distributions PX and QX on X

Df (PX‖QX) ≥ Df (PY ‖QY )

where PY and QY are probability distributions on Y given by PY (y) =
∑

x PX(x)W (y|x) and
QY (y) =

∑
xQX(x)W (y|x) .

(d) Show that if f is strictly convex in 1, then Df (P‖Q) = 0 if and only if P = Q .

Problem 6: Entropy and combinatorics

Let n ≥ 1 and fix some 0 ≤ k ≤ n . Let p = k
n and let Tn

p ⊂ {0, 1}n be the set of all binary
sequences with exactly np ones.

(a) Show that
log |Tn

p | = nh(p) +O(log n)

where h(p) = −p log p− (1− p) log(1− p) is the binary entropy function. Hint: Stirling’s approxi-
mation states that for every n ≥ 1 ,

e
1

12n+1

√
2πn

(n
e

)n
≤ n! ≤ e 1

12n

√
2πn

(n
e

)n
(b) Let Qn = Bernoulli(q)n be the i.i.d. Bernoulli distribution on {0, 1}n . Show that

logQn[Tn
p ] = −nd(p‖q) +O(log n)

where d(p‖q) = p log p
q + (1− p) log 1−p

1−q is the binary KL divergence.
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