Exercise 1 The Young double slit experiment (1803)

1) The scheme of the experiment is as follows:

If $D \gg d$, we use the approximation

$$
\left|\psi\left(\vec{r}_{P}\right)\right|^{2} \approx \frac{A^{2}}{D^{2}}\left|e^{\frac{2 \pi i}{\lambda}\left|\vec{r}_{B}-\vec{r}_{P}\right|}+e^{\frac{2 \pi i}{\lambda}\left|\vec{r}_{C}-\vec{r}_{P}\right|}\right|^{2} .
$$

By factoring out the factor whose modulus is 1 , we then have

$$
\left|\psi\left(\vec{r}_{P}\right)\right|^{2} \approx \frac{A^{2}}{D^{2}}\left|1+e^{\frac{2 \pi i}{\lambda}\left(\left|\vec{r}_{C}-\vec{r}_{P}\right|-\left|\vec{r}_{B}-\vec{r}_{P}\right|\right)}\right|^{2} .
$$

As shown in the above figure, the difference of lengths between the two beams $\left|\vec{r}_{C}-\vec{r}_{P}\right|-$ $\left|\vec{r}_{B}-\vec{r}_{P}\right|$ is $d \sin \theta$. Therefore, we have

$$
\begin{aligned}
\left|\psi\left(\vec{r}_{P}\right)\right|^{2} \approx \frac{A^{2}}{D^{2}}\left|1+e^{\frac{2 \pi i d \sin \theta}{\lambda}}\right|^{2} & =\frac{A^{2}}{D^{2}}\left[\left(1+\cos \left(\frac{2 \pi d \sin \theta}{\lambda}\right)\right)^{2}+\sin ^{2}\left(\frac{2 \pi d \sin \theta}{\lambda}\right)\right] \\
& =\frac{A^{2}}{D^{2}}\left[2+2 \cos \left(\frac{2 \pi d \sin \theta}{\lambda}\right)\right] \\
& =\frac{4 A^{2}}{D^{2}} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right),
\end{aligned}
$$

where the last line uses $\cos 2 \alpha=2 \cos ^{2} \alpha-1$.

Note: We used an approximation which was deduced with a geometric argument, but the same results can also be obtained algebraically. For instance, let $M=\frac{1}{2}(B+C)$ be the middle of the segment $[B C]$ and ϕ the direct angle between $\overrightarrow{M O}$ and $\overrightarrow{M P}$.

$$
\begin{aligned}
\left|\vec{r}_{P}-\vec{r}_{B}\right|=\|\overrightarrow{B P}\| & =\|\overrightarrow{B M}+\overrightarrow{M P}\| \\
& =\sqrt{B M^{2}+M P^{2}-2 \overrightarrow{M P} \cdot \overrightarrow{M B}} \\
& =M P \sqrt{1-2 \frac{\overrightarrow{M P} \cdot \overrightarrow{M B}}{M P^{2}}+\left(\frac{M B}{M P}\right)^{2}} \\
& \simeq M P\left(1-\frac{\overrightarrow{M P} \cdot \overrightarrow{M B}}{M P^{2}}+\frac{1}{2}\left(\frac{M B}{M P}\right)^{2}+o\left(\frac{d^{2}}{D^{2}}\right)\right)
\end{aligned}
$$

where we used $\frac{\overrightarrow{A P} \cdot \overrightarrow{A B}}{A P^{2}} \sim \frac{d \rho}{D^{2}}$ and $\frac{\overrightarrow{A P} \cdot \overrightarrow{A B}}{A P^{2}} \sim\left(\frac{d}{D}\right)^{2}$. Similarly:

$$
\begin{equation*}
C P \simeq M P\left(1-\frac{\overrightarrow{M P} \cdot \overrightarrow{M C}}{M P^{2}}+\frac{1}{2}\left(\frac{M C}{M P}\right)^{2}+o\left(\frac{d^{2}}{D^{2}}\right)\right) \tag{1}
\end{equation*}
$$

Therefore, using $M B=M C$ we have:

$$
\begin{equation*}
C P-B P \simeq \frac{\overrightarrow{M P}}{M P} \cdot(\overrightarrow{M B}-\overrightarrow{M C})=\frac{\overrightarrow{M P}}{M P} \cdot \overrightarrow{C B}=d \sin (\phi) \tag{2}
\end{equation*}
$$

and notice that for large D compared to d and ρ, the geometric angle θ can be assimilated with ϕ with $\phi \simeq \theta$.
2) The intensity attains its minima at 0 when $\sin \theta=\left(m+\frac{1}{2}\right) \frac{\lambda}{d}$. The intensity attains its maxima when the cosine function equals ± 1, whereby $\sin \theta=m \frac{\lambda}{d}$ for some integer m.
3) For $D \gg d$, we use the approximation $\tan \theta \approx \theta \approx \sin \theta$ so that the intensity is given by

$$
\left|\psi\left(\vec{r}_{P}\right)\right|^{2} \approx \frac{4 A^{2}}{D^{2}} \cos ^{2}\left(\frac{\pi d \rho}{D \lambda}\right)
$$

As the location of maxima satisfies $\frac{d \rho_{m}}{D \lambda}=m \in \mathbb{N}$, the distance between two successive minima is

$$
\rho_{m+1}-\rho_{m}=\lambda \frac{D}{d} .
$$

With $d=0.25 \mathrm{~mm}, D=10 \mathrm{~m}$ and $\lambda=652 \mathrm{~nm}$, the $\rho_{m+1}-\rho_{m}$ is 26.1 mm .

Exercise 2 Modern Young's experiment

1) For a molecule of $C_{60} p=m v$, where $m=\frac{M_{\text {mole }}}{N_{A}} \times 60$. The De Broglie wavelength is $\lambda=\frac{h}{p}=\frac{h N_{A}}{60 M_{\text {mole } v}}$. For an average velocity of $220 \mathrm{~m} / \mathrm{s}$, the wavelength is $2.518 \times 10^{-12} \mathrm{~m}$.
2) Take the results known for waves. We should observe interference fringes with a distance $\rho_{m+1}-\rho_{m}=\lambda \frac{D}{d}=31.48 \mu \mathrm{~m}$.
3) The wavelength is $5.30 \times 10^{-35} \mathrm{~m}$, which is not a measurable distance.

Exercise 3 Photoelectric effect
According to Einstein's formula, the kinetic energy of the ejected electrons is

$$
\frac{1}{2} m v^{2}=h \nu-W_{0}
$$

where $W_{0}=h \nu_{0}=\frac{h c}{\lambda_{0}}$ is the minimal energy for extraction. The equation can be rewritten as $\frac{h c}{\lambda}=\frac{1}{2} m v^{2}+\frac{h c}{\lambda_{0}}$. Therefore, the necessary wavelength is

$$
\lambda=\left(\frac{1}{2} m v^{2}+\frac{h c}{\lambda_{0}}\right)^{-1} h c .
$$

Numerics can be calculated using $\frac{1}{2} m v^{2}=1.5 \mathrm{eV}$ and one finds $\lambda=180 \mathrm{~nm}$.

