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1. In order to compute p
(2n)
00 , you should realize the following:

(i) the random walk must go up as many times as it goes down in order to come back to 0 in 2n
steps: it therefore goes up n times and goes down n times;

(ii) the number of possible paths is equal to the number of choices for the n “up” moves among
the 2n time instants available: this number is

(
2n
n

)
;

(iii) the probability of each path is the same: pn qn, as each path goes up n times and goes down
n times.

In total, the probability is therefore given by

p
(2n)
00 =

(
2n

n

)
pn qn

Using then Stirling’s approximation for
(
2n
n

)
= 2n!

n!n! , we obtain(
2n

n

)
pn qn ∼

√
2π(2n)

(
2n
e

)2n
2πn

(
n
e

)2n (pq)n =
(4pq)n√
πn

2. a) Both X and Y are random walks with probability 1/4 to go in either direction, and probability
1/2 to stay in place.

b) No, they are not independent: when X makes a move, Y does not, and vice-versa.

c) Both U and V are simple symmetric random walks with probability 1/2 to go in either direction.

d) Yes, they are independent. Denote Un = η1 + . . .+ ηn, Vn = χ1 + . . .+ χn. Then one can check
e.g. that (and similarly for all ±1 combinations)

P(ηn = +1, χn = +1) = P
(−→
ξn = (+1, 0)

)
=

1

4
= P(ηn = +1) · P(χn = +1)

e) Note that
−→
S2n = (0, 0) if and only if U2n = V2n = 0, so by the independence shown above, we

obtain

P
(−→
S2n = (0, 0) |

−→
S0 = (0, 0)

)
= P(U2n = 0, V2n = 0 |U0 = 0, V0 = 0)

= P(U2n = 0 |U0 = 0) · P(V2n = 0 |V0 = 0) =

((
2n

n

)
2−2n

)2

∼ 1

πn

by Exercise 1.
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3. Consider i and j are two intercommunicating states. For arbitrary m, n, and r ∈ N, we have

p
(m+n+r)
ii = P(Xm+n+r = i|X0 = i) =

∑
k1,k2

P(Xm+n+r = i,Xm+r = k2, Xm = k1|X0 = i)

=
∑
k1,k2

P(Xm+n+r = i|Xm+r = k2)P(Xm+r = k2|Xm = k1)P(Xm = k1|X0 = i)

which can be rewritten as

p
(m+n+r)
ii =

∑
k1,k2

p
(n)
k2i
p
(r)
k1k2

p
(m)
ik1
≥ p(n)ji p

(r)
jj p

(m)
ij

Since i and j are intercommunicating states, there always exist m and n ∈ N such that p
(m)
ij > 0

and p
(n)
ji > 0. So, let us consider n and m fixed, and define α = p

(n)
ji p

(m)
ij > 0. The inequality then

can be rewritten as a function of α:
p
(m+n+r)
ii ≥ αp(r)jj

Therefore, p
(r)
jj can be non-zero only if p

(m+n+r)
ii is non-zero. p

(m+n+r)
ii is non-zero only if d(i)|m+

n+ r. At the same time, for the case r = 0, we have p
(m+n)
ii ≥ α > 0, which means that d(i)|m+n.

Therefore, p
(r)
jj can be non-zero only if d(i)|r, which means that d(i)|d(j). With the same argument,

we have d(j)|d(i), and as a conclusion we have d(j) = d(i).
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