Markov Chains and Algorithmic Applications - IC - EPFL

Solutions 1

1. In order to compute $p_{00}^{(2 n)}$, you should realize the following:
(i) the random walk must go up as many times as it goes down in order to come back to 0 in $2 n$ steps: it therefore goes up n times and goes down n times;
(ii) the number of possible paths is equal to the number of choices for the n "up" moves among the $2 n$ time instants available: this number is $\binom{2 n}{n}$;
(iii) the probability of each path is the same: $p^{n} q^{n}$, as each path goes up n times and goes down n times.

In total, the probability is therefore given by

$$
p_{00}^{(2 n)}=\binom{2 n}{n} p^{n} q^{n}
$$

Using then Stirling's approximation for $\binom{2 n}{n}=\frac{2 n!}{n!n!}$, we obtain

$$
\binom{2 n}{n} p^{n} q^{n} \sim \frac{\sqrt{2 \pi(2 n)}\left(\frac{2 n}{e}\right)^{2 n}}{2 \pi n\left(\frac{n}{e}\right)^{2 n}}(p q)^{n}=\frac{(4 p q)^{n}}{\sqrt{\pi n}}
$$

2. a) Both X and Y are random walks with probability $1 / 4$ to go in either direction, and probability $1 / 2$ to stay in place.
b) No, they are not independent: when X makes a move, Y does not, and vice-versa.
c) Both U and V are simple symmetric random walks with probability $1 / 2$ to go in either direction.
d) Yes, they are independent. Denote $U_{n}=\eta_{1}+\ldots+\eta_{n}, V_{n}=\chi_{1}+\ldots+\chi_{n}$. Then one can check e.g. that (and similarly for all ± 1 combinations)

$$
\mathbb{P}\left(\eta_{n}=+1, \chi_{n}=+1\right)=\mathbb{P}\left(\overrightarrow{\xi_{n}}=(+1,0)\right)=\frac{1}{4}=\mathbb{P}\left(\eta_{n}=+1\right) \cdot \mathbb{P}\left(\chi_{n}=+1\right)
$$

e) Note that $\overrightarrow{S_{2 n}}=(0,0)$ if and only if $U_{2 n}=V_{2 n}=0$, so by the independence shown above, we obtain

$$
\begin{aligned}
& \mathbb{P}\left(\overrightarrow{S_{2 n}}=(0,0) \mid \overrightarrow{S_{0}}=(0,0)\right)=\mathbb{P}\left(U_{2 n}=0, V_{2 n}=0 \mid U_{0}=0, V_{0}=0\right) \\
& \quad=\mathbb{P}\left(U_{2 n}=0 \mid U_{0}=0\right) \cdot \mathbb{P}\left(V_{2 n}=0 \mid V_{0}=0\right)=\left(\binom{2 n}{n} 2^{-2 n}\right)^{2} \sim \frac{1}{\pi n}
\end{aligned}
$$

by Exercise 1.
3. Consider i and j are two intercommunicating states. For arbitrary m, n, and $r \in \mathbb{N}$, we have

$$
\begin{aligned}
p_{i i}^{(m+n+r)} & =\mathbb{P}\left(X_{m+n+r}=i \mid X_{0}=i\right)=\sum_{k_{1}, k_{2}} \mathbb{P}\left(X_{m+n+r}=i, X_{m+r}=k_{2}, X_{m}=k_{1} \mid X_{0}=i\right) \\
& =\sum_{k_{1}, k_{2}} \mathbb{P}\left(X_{m+n+r}=i \mid X_{m+r}=k_{2}\right) \mathbb{P}\left(X_{m+r}=k_{2} \mid X_{m}=k_{1}\right) \mathbb{P}\left(X_{m}=k_{1} \mid X_{0}=i\right)
\end{aligned}
$$

which can be rewritten as

$$
p_{i i}^{(m+n+r)}=\sum_{k_{1}, k_{2}} p_{k_{2 i}}^{(n)} p_{k_{1} k_{2}}^{(r)} p_{i k_{1}}^{(m)} \geq p_{j i}^{(n)} p_{j j}^{(r)} p_{i j}^{(m)}
$$

Since i and j are intercommunicating states, there always exist m and $n \in \mathbb{N}$ such that $p_{i j}^{(m)}>0$ and $p_{j i}^{(n)}>0$. So, let us consider n and m fixed, and define $\alpha=p_{j i}^{(n)} p_{i j}^{(m)}>0$. The inequality then can be rewritten as a function of α :

$$
p_{i i}^{(m+n+r)} \geq \alpha p_{j j}^{(r)}
$$

Therefore, $p_{j j}^{(r)}$ can be non-zero only if $p_{i i}^{(m+n+r)}$ is non-zero. $p_{i i}^{(m+n+r)}$ is non-zero only if $d(i) \mid m+$ $n+r$. At the same time, for the case $r=0$, we have $p_{i i}^{(m+n)} \geq \alpha>0$, which means that $d(i) \mid m+n$. Therefore, $p_{j j}^{(r)}$ can be non-zero only if $d(i) \mid r$, which means that $d(i) \mid d(j)$. With the same argument, we have $d(j) \mid d(i)$, and as a conclusion we have $d(j)=d(i)$.

