Markov Chains and Algorithmic Applications - IC - EPFL

Homework 4

Exercise 1. a) Let μ and ν be two distributions on a state space S (i.e., $\mu_i, \nu_i \ge 0$ for every $i \in S$ and $\sum_{i \in S} \mu_i = \sum_{i \in S} \nu_i = 1$). Show that the following three definitions of the total variation distance between μ and ν are equivalent:

- 1. $\|\mu \nu\|_{\text{TV}} = \frac{1}{2} \sum_{i \in S} |\mu_i \nu_i|.$
- 2. $\|\mu \nu\|_{\text{TV}} = \sup_{A \subset S} |\mu(A) \nu(A)|$, where $\mu(A) = \sum_{i \in A} \mu_i$ and $\nu(A) = \sum_{i \in A} \nu_i$.
- 3. $\|\mu \nu\|_{\text{TV}} = \frac{1}{2} \sup_{\phi: S \to [-1,+1]} |\mu(\phi) \nu(\phi)|$, where $\mu(\phi) = \sum_{i \in S} \mu_i \phi_i$ and $\nu(\phi) = \sum_{i \in S} \nu_i \phi_i$.

Hint: The easiest way is to show that $1 \le 2 \le 3 \le 1$.

On $\mathcal{S} = \{0, 1\}$, let now μ, ν be the two distributions defined as $\mu = (3/4, 1/4)$ and $\nu = (1/4, 3/4)$.

b) Describe three different couplings (X, Y) of μ and ν such that: **b1)** X and Y are positively correlated, **b2)** X and Y are independent; **b3)** X and Y are negatively correlated.

c) Describe the coupling (X, Y) such that $\|\mu - \nu\|_{\text{TV}} = \mathbb{P}(X \neq Y)$.

NB: One can show that such a coupling always exists.

Exercise 2. Let $(X_n, n \ge 1)$ be a Markov chain with state space $S = \{0, 1\}$, initial distribution $\pi^{(0)}$ and transition matrix

$$P = \begin{pmatrix} 1-p & p \\ q & 1-q \end{pmatrix} \quad \text{where} \quad 0 < p, q < 1$$

Let $(Y_n, n \ge 1)$ be another Markov chain with same state space S and same transition matrix P, but whose initial distribution π is also the stationary distribution of the chain.

a) Compute π .

We consider now the coupled chain Z = (X, Y) with state space $S \times S$ such that X, Y evolve independently according to P as long as $X_n \neq Y_n$, and then evolve together, still according to P, as soon as $X_n = Y_n$.

b) Write down the transition matrix P_Z of the chain Z.

c) Which states of Z are transient / recurrent?

d) Does the chain Z admit a unique limiting and stationary distribution π_Z ? If yes, compute it; if no, explain why.

e) Express $\mathbb{P}(X_{n+1} \neq Y_{n+1})$ as a function of $\mathbb{P}(X_n \neq Y_n)$.

f) From e), deduce an upper bound on $\max_{i \in S} \|P_i^n - \pi\|_{TV}$.

g) When p = q, what value of 0 leads to the fastest convergence?

Exercise 3. Let $(X_n, n \ge 0)$ be a time-homogeneous Markov chain with state space $S = \{0, 1, 2, 3, 4, 5\}$. Moreover suppose that the Markov chain evolves according to the transition graph depicted in figure 1, where from any state, we move to a neighbouring state uniformly at random.

Figure 1: State diagram for the Markov chain $(X_n, n \ge 0)$

- a) Find the transition matrix P associated to the chain.
- **b**) Is the chain irreducible? Is it periodic or aperiodic? Is it ergodic?
- c) Find its stationary distribution. Is it also a limiting distribution?
- d) Starting from state 2, what is the expected number of steps before we come back to that state?
- e) Compute the 2-step transition probabilities $p_{ij}^{(2)}$ for $i, j \in \mathcal{S}$.
- **f**) Describe the equivalence classes of the chain with transition matrix $Q = P^2$.
- **g)** Compute both $\lim_{n\to\infty} \mathbb{P}(X_n = 1 | X_0 = 1)$ and $\lim_{n\to\infty} \mathbb{P}(X_{2n} = 1 | X_0 = 1)$.