Markov Chains and Algorithmic Applications - IC - EPFL

Homework 4

Exercise 1. a) Let μ and ν be two distributions on a state space S (i.e., $\mu_{i}, \nu_{i} \geq 0$ for every $i \in S$ and $\sum_{i \in S} \mu_{i}=\sum_{i \in S} \nu_{i}=1$). Show that the following three definitions of the total variation distance between μ and ν are equivalent:

1. $\|\mu-\nu\|_{\mathrm{TV}}=\frac{1}{2} \sum_{i \in S}\left|\mu_{i}-\nu_{i}\right|$.
2. $\|\mu-\nu\|_{\mathrm{TV}}=\sup _{A \subset S}|\mu(A)-\nu(A)|$, where $\mu(A)=\sum_{i \in A} \mu_{i}$ and $\nu(A)=\sum_{i \in A} \nu_{i}$.
3. $\|\mu-\nu\|_{\mathrm{TV}}=\frac{1}{2} \sup _{\phi: S \rightarrow[-1,+1]}|\mu(\phi)-\nu(\phi)|$, where $\mu(\phi)=\sum_{i \in S} \mu_{i} \phi_{i}$ and $\nu(\phi)=\sum_{i \in S} \nu_{i} \phi_{i}$.

Hint: The easiest way is to show that $1 \leq 2 \leq 3 \leq 1$.
On $\mathcal{S}=\{0,1\}$, let now μ, ν be the two distributions defined as $\mu=(3 / 4,1 / 4)$ and $\nu=(1 / 4,3 / 4)$.
b) Describe three different couplings (X, Y) of μ and ν such that: b1) X and Y are positively correlated, b2) X and Y are independent; b3) X and Y are negatively correlated.
c) Describe the coupling (X, Y) such that $\|\mu-\nu\|_{\mathrm{TV}}=\mathbb{P}(X \neq Y)$.
$N B$: One can show that such a coupling always exists.

Exercise 2. Let $\left(X_{n}, n \geq 1\right)$ be a Markov chain with state space $\mathcal{S}=\{0,1\}$, initial distribution $\pi^{(0)}$ and transition matrix

$$
P=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right) \quad \text { where } \quad 0<p, q<1
$$

Let $\left(Y_{n}, n \geq 1\right)$ be another Markov chain with same state space \mathcal{S} and same transition matrix P, but whose initial distribution π is also the stationary distribution of the chain.
a) Compute π.

We consider now the coupled chain $Z=(X, Y)$ with state space $\mathcal{S} \times \mathcal{S}$ such that X, Y evolve independently according to P as long as $X_{n} \neq Y_{n}$, and then evolve together, still according to P, as soon as $X_{n}=Y_{n}$.
b) Write down the transition matrix P_{Z} of the chain Z.
c) Which states of Z are transient / recurrent?
d) Does the chain Z admit a unique limiting and stationary distribution π_{Z} ? If yes, compute it; if no, explain why.
e) Express $\mathbb{P}\left(X_{n+1} \neq Y_{n+1}\right)$ as a function of $\mathbb{P}\left(X_{n} \neq Y_{n}\right)$.
f) From e), deduce an upper bound on $\max _{i \in \mathcal{S}}\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}}$.
g) When $p=q$, what value of $0<p<1$ leads to the fastest convergence?

Exercise 3. Let $\left(X_{n}, n \geq 0\right)$ be a time-homogeneous Markov chain with state space $\mathcal{S}=$ $\{0,1,2,3,4,5\}$. Moreover suppose that the Markov chain evolves according to the transition graph depicted in figure 1 , where from any state, we move to a neighbouring state uniformly at random.

Figure 1: State diagram for the Markov chain ($X_{n}, n \geq 0$)
a) Find the transition matrix P associated to the chain.
b) Is the chain irreducible? Is it periodic or aperiodic? Is it ergodic?
c) Find its stationary distribution. Is it also a limiting distribution?
d) Starting from state 2 , what is the expected number of steps before we come back to that state?
e) Compute the 2 -step transition probabilities $p_{i j}^{(2)}$ for $i, j \in \mathcal{S}$.
f) Describe the equivalence classes of the chain with transition matrix $Q=P^{2}$.
g) Compute both $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=1 \mid X_{0}=1\right)$ and $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{2 n}=1 \mid X_{0}=1\right)$.

