Markov Chains and Algorithmic Applications - IC - EPFL

Homework 2

Exercise 1. Let $\left(X_{n}, n \geq 1\right)$ be a sequence of i.i.d. random variables such that $\mathbb{P}\left(X_{n}=+1\right)=$ $\mathbb{P}\left(X_{n}=-1\right)=\frac{1}{2}$ for every $n \geq 1$. Let also $\left(S_{n}, n \geq 0\right)$ the simple symmetric random walk defined as $S_{0}=0, S_{n+1}=S_{n}+X_{n+1}$ for $n \geq 0$.

Among the following discrete-time stochastic processes, which are (time-homogeneous) Markov chains, which are not? If a process is a Markov chain, prove it and compute its transition matrix P^{1}. If a process is not, find a counter-example showing that the Markov property is not satisfied (Hint: Consider small values of $n!$)
a) $Y_{n}=S_{2 n}$ for $n \geq 0$.
b) $Z_{n}=(-1)^{S_{n}}$ for $n \geq 0$.
c) $T_{n}=\max \left\{S_{0}, S_{1}, \ldots, S_{n}\right\}$ for $n \geq 0$.
d) $W_{0}=0$ and $W_{n+1}=W_{n}+X_{2 n+1}+X_{2 n+2}$ for $n \geq 0$.

Exercise 2. Let ($X_{n}, n \geq 0$) be a time-homogeneous Markov chain with state space $\mathcal{S}=\{0,1\}$ and transition probabilities

$$
\mathbb{P}\left(X_{n+1}=1 \mid X_{n}=0\right)=p \quad \text { and } \quad \mathbb{P}\left(X_{n+1}=0 \mid X_{n}=1\right)=q
$$

where $0<p, q<1$.
a) Write down the transition matrix P of the chain and draw its transition graph.
b) For which values of p, q does it hold that $\left(X_{n}, n \geq 0\right)$ is a sequence of independent random variables?
c) Compute the n-step transition probabilities $p_{00}^{(n)}=\mathbb{P}\left(X_{n}=0 \mid X_{0}=0\right)$.

Hint: Use the eigenvalue-eigenvector decomposition of the matrix P.
d) Compute $\sum_{n \geq 1} p_{00}^{(n)}$. Is it finite or not? What does that imply?
e) Let now $T_{0}=\inf \left\{n \geq 1: X_{n}=0\right\}$. Compute $f_{00}^{(n)}=\mathbb{P}\left(T_{0}=n \mid X_{0}=0\right)$ and $f_{00}=\mathbb{P}\left(T_{0}<+\infty \mid X_{0}=0\right)$. Is your result coherent with what you have obtained in question d)?
f) Compute $\mathbb{E}\left(T_{0} \mid X_{0}=0\right)$. Is it finite or not? What does that imply?
g) For questions e) and f), consider the following special cases: 1) $p+q=1$ and 2) $p=q$. Interpret your results.

[^0]Exercise 3. Let $\left(X_{n}, n \in \mathbb{N}\right)$ be a time-homogeneous Markov chain with n-step transition probabilities

$$
p_{i j}^{(n)}=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)
$$

a) Using the criterion for recurrence seen in the lectures, show that in a given equivalence class, either all states are recurrent, or all states are transient.
We define now the probability of first passage as the probability that the chain passes from i to j in n steps without passing by j before the $n^{t h}$ step:

$$
f_{i j}^{(n)}=\mathbb{P}\left(X_{n}=j, X_{n-1} \neq j, \ldots, X_{1} \neq j \mid X_{0}=i\right)
$$

Note: When $i=j$, this matches the definition of $f_{i i}^{(n)}$ seen in class. Let also

$$
\begin{array}{ll}
P_{i j}(s)=\sum_{n=0}^{\infty} p_{i j}^{(n)} s^{n} & p_{i j}(0)=\delta_{i j} \\
F_{i j}(s)=\sum_{n=0}^{\infty} f_{i j}^{(n)} s^{n} & f_{i j}(0)=0
\end{array}
$$

be the associated generating functions. Recall that we proved in class that $P_{i i}(s)=1+F_{i i}(s) P_{i i}(s)$.
b) Prove that for $i \neq j: P_{i j}(s)=F_{i j}(s) P_{j j}(s)$
c) Deduce the following statements:

1. If j is recurrent, then $\sum_{n \geq 0} p_{i j}^{(n)}=+\infty$ for all i such that $f_{i j}>0$, where $f_{i j}=\sum_{n \geq 0} f_{i j}^{(n)}$.
2. If j is transient, then $\sum_{n \geq 0} p_{i j}^{(n)}<+\infty$ for all i.

[^0]: ${ }^{1} N B$: Computing the transition matrix P does not prove by any means that the process is a Markov process!

