Analyse avancée II – Série 11A

Échauffement. (Extremums)

Déterminer les points stationnaires de la fonction $f(x,y) = x^2 + y^2 - 2x - y + 1$ et étudier leur nature.

Exercice 1. (Points stationnaires)

Pour les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ données ci-dessous, étudier la nature du point stationnaire (0,0):

i)
$$f(x,y) = x^2 + y^2$$

$$ii) \quad f(x,y) = x^2 - y^2$$

iii)
$$f(x,y) = -x^2 + y^2$$

$$iv) f(x,y) = -x^2 - y^2$$

$$f(x,y) = x^4 + y^4$$

$$vi) \quad f(x,y) = x^4 - y^4$$

$$vii) \ f(x,y) = -x^4 + y^4$$

$$viii) f(x,y) = -x^4 - y^4$$

Exercice 2. (Classification des points stationnaires)

- i) Diagonaliser la matrice $A = \begin{pmatrix} 6 & -2 \\ -2 & 3 \end{pmatrix}$.
- ii) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^2 , soit (x_0, y_0) un point stationnaire de f et soient λ_1 et λ_2 les valeurs propres de $H_f(x_0, y_0)$. Etablir la nature de (x_0, y_0) à partir de chacune des trois conditions sur λ_1 , λ_2 vues au cours.
- iii) Calculer les coordonnées (\bar{x}, \bar{y}) pour la fonction f(x, y) = 4xy autour de son unique point stationnaire et en déduire sa nature.

Exercice 3. (Extremums, \mathbb{R}^2)

Déterminer les points stationnaires des fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ suivantes et étudier leur nature.

i)
$$f(x,y) = 2 + 3y^2 + \cos(x)$$

ii)
$$f(x,y) = x^3 - y^3 + x^2 + 2xy + y^2$$

$$f(x,y) = -3x^2 + xy^2 - y^4$$

Exercice 4. (Extremums, \mathbb{R}^3)

Déterminer les points stationnaires des fonctions $f: \mathbb{R}^3 \to \mathbb{R}$ suivantes et étudier leur nature.

$$i) \ \ f(x,y,z) = -2x^2 - 5y^2 - z^2 + 4xy + 2yz + 2 \qquad ii) \ \ f(x,y,z) = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 + 2yz + 2 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 + 2yz + 2 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3x^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3x^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3x^2 + y^3 + 3z^2 - 3y + 4 = 2x^2 - 3x^2 + y^3 + 3z^2 - 3y + 3z^2$$

ii)
$$f(x, y, z) = 2x^2 - 3xz^2 + y^3 + 3z^2 - 3y + 4$$

Exercice 5. (Extremums absolus, \mathbb{R}^2)

Déterminer les extremums absolus de la fonction $f: D \to \mathbb{R}$ définie par

$$i) \ f(x,y) = x^2 - xy + y^2 - x - y, \quad \text{où} \ D = \{(x,y) : x \ge 0, \ y \ge 0, \ x + y \le 3\}$$

ii)
$$f(x,y) = 2x^2 - xy + 2y^2 - 6x - 6y$$
, où $D = \{(x,y) : y \ge 0, x^2 + y^2 \le 32\}$

Indication: le polynôme qui apparaîtra admet certaines racines entières.

Exercice 6. (Extremums absolus, \mathbb{R}^3)

Soit $f: \mathbb{R}^3 \to \mathbb{R}$ une fonction de classe C^1 telle que

$$\frac{\partial f}{\partial x} = z + 1, \qquad \frac{\partial f}{\partial y} = -1, \qquad \frac{\partial f}{\partial z} = x + 2.$$

Déterminer les extremums absolus de f sur le domaine

$$D = \{(x, y, z) : 0 \le x \le a, \ 0 \le y \le b, \ 0 \le z \le c\}, \quad \text{où } a, b, c > 0,$$

sachant que f(0, 0, 0) = 3.

Exercice 7. (Pentes extrémales)

Soient la fonction $f: \mathbb{R}^3 \to \mathbb{R}$ définie par f(x, y, z) = xyz, le point $p_0 = (1, -1, 2) \in \mathbb{R}^3$, ainsi que le vecteur unitaire \boldsymbol{u} , donné en coordonnées sphériques (dans le référentiel local attaché en p_0) par

$$\boldsymbol{u} = \begin{pmatrix} \sin(\theta)\cos(\varphi) \\ \sin(\theta)\sin(\varphi) \\ \cos(\theta) \end{pmatrix}.$$

La dérivée directionnelle de f en p_0 suivant le vecteur \boldsymbol{u} est donnée par la fonction $g:[0,\pi]\times [0,2\pi[\to\mathbb{R}\,,$

$$g(\theta, \varphi) = 2\sin(\theta)(\sin(\varphi) - \cos(\varphi)) - \cos(\theta)$$

(cf. Ex. 3 de la Série 10). Trouver les extremums de g en calculant ses points stationnaires et calculer les vecteurs u associés. Comparer avec les résultats obtenus à la Série 10.

Exercice 8. (Dérivée (totale) et différentielle)

Soit V l'espace vectoriel des matrices $n \times n$ équipé de la norme

$$||A|| := \sup_{\substack{v \in \mathbb{R}^n \\ v \neq 0}} \frac{||Av||}{||v||},$$

où $v \mapsto ||v||$ est une norme quelconque sur \mathbb{R}^n (par abus de notation nous utilisons la même notation pour la norme sur R^n et la norme matricielle sur V induite par cette norme). Soit la fonction $f: V \to V$ définie pour $X \in V$ par $f(X) = X^2$.

- i) Montrer que f est différentiable en tout point $X_0 \in V$.
- ii) Trouver la différentielle de f.

Exercice 9. (Norme d'une intégrale d'une fonction à valeurs dans \mathbb{R}^m)

Soient $I=[a,b],\ a< b,$ un intervalle fermé, $m\in\mathbb{N}^*$ et $f\colon I\to\mathbb{R}^m$ une fonction continue. Montrer que pout toute norme sur \mathbb{R}^m ,

$$\left\| \int_a^b f(t) dt \right\| \leq \int_a^b \|f(t)\| dt ,$$

où par définition l'intégrale de f est le vecteur des intégrales des composantes de f.