Analyse avancée II – Corrigé de la série 5A

Échauffement 1.

Les fonctions f et g sont de classe C^1 sur leur domaine de définition. La fonction h est continue sur son domaine de définition [-1,1] et de classe C^1 sur l'intervalle ouvert]-1,1[. Soit $\omega(t)=t/2$. Alors $g(\omega(t))=f(t)$ pour tout $t\in [0,\pi]$ et $\omega\colon [0,\pi]\to [0,\pi/2]$ est de classe C^1 , strictement croissante et surjective et la fonction w' ne s'annule en aucun point. Les fonctions f et g sont donc des chemins C^1 -équivalents et en conclusion des paramétrisations de la même courbe de classe C^1 . Soit $\omega_0(t)=\cos(t)$. Alors $h(\omega_0(t))=f(t)$ pour tout $t\in [0,\pi]$ et $\omega_0\colon [0,\pi]\to [-1,1]$ est continue, strictement décroissante et surjective. La fonction w_0 est en fait de classe C^1 , mais la fonction dérivée w'_0 s'annule en t=0 et en $t=\pi$. Le chemin h est donc équivalent au chemin f au sens des chemins continus, mais pas au sens des chemins de classe C^1 . Les fonctions f, g et h sont donc des paramétrisations de la courbe continue f0, mais seulement f1 et f2 sont des paramétrisations de la courbe de classe f3. A noter que f3 est la paramétrisation canonique de cette courbe de classe f3.

Exercice 1.

Supposons que $f = (f_1, \ldots, f_m)^T : I_1 = [a, b] \to \mathbb{R}^m$ et $g = (g_1, \ldots, g_m)^T : I_2 = [c, d] \to \mathbb{R}^m$ soient des paramétrisations de classe C^1 d'une courbe de classe C^1 . Alors, par définition, il existe une fonction de classe C^1 $\omega : I_1 \to I_2$, telle que pour tout $t \in I_1$, $g(\omega(t)) = f(t)$. Par conséquence $f_i(t) = g_i(\omega(t))$ pour $i = 1, \ldots, m$ et par la dérivée en chaîne pour des fonctions d'une variable (voir Analyse I) on obtient que $f'_i(t) = g'_i(\omega(t))\omega'(t)$ pour $i = 1, \ldots, m$. Par la linéarité on obtient du coup que pour tout $t \in I_1$,

$$f'(t) = \omega'(t) g'(\omega(t)).$$

Par la définition de la longueur du chemin f et par la propriété de la homogénéité d'une norme on a

$$|f| = \int_a^b ||f'(t)|| dt = \int_a^b ||\omega'(t)|| g'(\omega(t))|| dt = \int_a^b |\omega'(t)|| ||g'(\omega(t))|| dt.$$

La fonction ω est par définition strictement monotone et on a donc ou bien que pour tout $t \in I_1$, $\omega'(t) > 0$ ou bien que pour tout $t \in I_1$, $\omega'(t) < 0$. Dans le premier car on obtient que

$$|f| = \int_{a}^{b} \omega'(t) \|g'(\omega(t))\| dt,$$

et en posant le changement de variables $t = \varphi(s) = \omega^{-1}(s)$ on obtient, en utilisant que $\varphi'(s) = \frac{1}{\omega'(\omega^{-1}(s))}$, que

$$|f| = \int_{c}^{d} \omega'(w^{-1}(s)) \|g'(\omega(\omega^{-1}(s)))\| \frac{1}{\omega'(\omega^{-1}(s))} ds = \int_{c}^{d} \|g'(s)\| ds = |g|.$$

Dans le deuxième cas on a que

$$|f| = \int_{d}^{c} \left(-\omega'(w^{-1}(s)) \right) \|g'(\omega(\omega^{-1}(s)))\| \frac{1}{\omega'(\omega^{-1}(s))} ds = \int_{c}^{d} \|g'(s)\| ds = |g|.$$

Exercice 2.

Notons pour commencer que $-\cos(\varepsilon) = \cos(\pi - \varepsilon)$. Sur leurs domaines restreints respectives les paramétrisations f et h sont donc C^1 -équivalentes (voir l'Échauffement 1.). On a donc (voir Exercice 1.) que pour tout $\varepsilon \in]0, \pi/2[$,

$$|f| = \int_{\varepsilon}^{\pi - \varepsilon} ||f'(t)|| dt = \int_{\cos(\pi - \varepsilon)}^{\cos(\varepsilon)} ||h'(t)|| dt = |h|.$$

On a ||f'(t)|| = 1 et

$$||h'(t)|| = \left\| \left(1, \frac{-t}{\sqrt{1 - t^2}} \right)^T \right\| = \frac{1}{\sqrt{1 - t^2}},$$

et donc

$$\pi - 2\varepsilon = \int_{\cos(\pi - \varepsilon)}^{\cos(\varepsilon)} \|h'(t)\| \ dt = 2 \int_0^{\cos(\varepsilon)} \frac{1}{\sqrt{1 - t^2}} \ dt,$$

ce qui implique que

$$\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} dt := \lim_{\varepsilon \to 0+} \int_{0}^{\cos(\varepsilon)} \frac{1}{\sqrt{1-t^{2}}} dt = \frac{\pi}{2}.$$

Exercice 3.

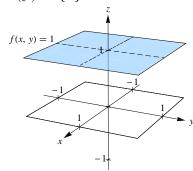
On a par définition que

$$W = \int_0^{2\pi} \left\langle \left(-\sin(t), \cos(t) \right)^T, \left(-\sin(t), \cos(t) \right)^T \right\rangle dt = \int_0^{2\pi} 1 \ dt = 2\pi.$$

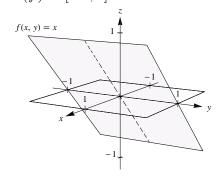
Échauffement 2.

Les lignes hachurées sont les images des axes x et y par la fonction f.

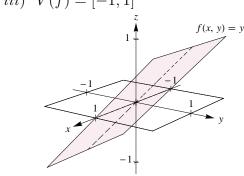
 $i)\ V(f)=\{1\}$

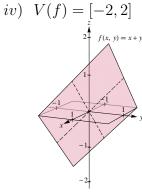


ii) V(f) = [-1, 1]

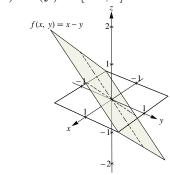


 $iii) \ V(f)=[-1,1]$

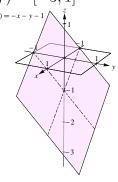




v) V(f) = [-2, 2]



vi) V(f) = [-3, 1]



Exercice 4.

a) On a
$$\lim_{(x,y)\to(2,1)} \frac{x^2-3y}{x+2y^2} = \frac{4-3}{2+2} = \frac{1}{4}$$
.

b) On utilise les coordonnées polaires: $\left\{\begin{array}{ll} x=r\cos(\varphi)\\ y=r\sin(\varphi) \end{array}\right.. \text{ Ainsi} \ \ x^2+y^2=r^2 \ \text{ et donc}$

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{r\to 0} \frac{\sin(r^2)}{r^2} = 1 \quad \text{(Fig. 1)}.$$

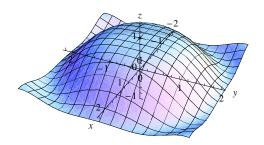


Fig. 1: La limite est représentée par le point noir.

- c) Sur une suite de points de la forme $(x_n,0)$, avec $x_n \neq 0$ et $\lim_{n \to \infty} x_n = 0$ on a $\lim_{n \to \infty} f(x_n,0) = \frac{x_n \cdot 0^2}{x_n^2 + 0^4} = \lim_{n \to \infty} 0 = 0$. D'autre part, sur une suite de points (y_n^2, y_n) avec $y_n \neq 0$ et $\lim_{n \to \infty} y_n = 0$ on a $\lim_{n \to \infty} f(y_n^2, y_n) = \lim_{n \to \infty} \frac{y_n^2 y_n^2}{(y_n^2)^2 + y_n^4} = \frac{1}{2}$. Donc la limite n'existe pas.
- d) Pour $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ avec $x \neq 0$ on a

$$|f(x,y)| = \left| \frac{x^2 y}{x^2 + y^4} \right| \le \left| \frac{x^2 y}{x^2 + 0} \right| \le |y|,$$

et pour $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ avec x=0 on a f(x,y)=0. On a donc dans tous les cas que $|f(x,y)| \leq |y|$. Soit (x_n,y_n) une suite telle que $(x_n,y_n) \neq (0,0)$ et $\lim_{n\to\infty} (x_n,y_n) = (0,0)$. Par la Proposition 2.6 du cours on a que $\lim_{n\to\infty} y_n = 0$ et donc $\lim_{n\to\infty} |f(x_n,y_n)| \leq \lim_{n\to\infty} |y_n| = 0$. Par la définition de la limite ceci implique que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

Exercice 5.

a) On a

$$\frac{|x|^{3/2}|y|^{3/2}}{x^2 + y^4} = \frac{|x|^{3/2}}{(x^2 + y^4)^{3/4}} \frac{|y|^{3/2}}{(x^2 + y^4)^{1/4}} \le \frac{|x|^{3/2}}{(x^2)^{3/4}} \frac{|y|^{3/2}}{(y^4)^{1/4}} \le \sqrt{|y|} ,$$

et la limite vaut donc zéro.

b) Le long d'une suite épointée de la forme $(x_n, 0)$ on a

$$\frac{|x_n|^{3/2}|0|}{x_n^2 + 0^4} = 0 ,$$

tandis que le long d'une suite épointée de la forme (y_n^2, y_n) on a

$$\frac{|y_n^2|^{3/2}|y_n|}{y_n^4 + y_n^4} = \frac{1}{2} ,$$

et la limite n'existe donc pas.

c) On a que

$$\left| \frac{x^3 y^2}{(x^2 + y^4)(x^4 + y^2)} \right| = \left| \frac{x^3}{x^2 + y^4} \right| \left| \frac{y^2}{x^4 + y^2} \right| \le \left| \frac{x^3}{x^2 + 0^4} \right| \left| \frac{y^2}{0^4 + y^2} \right| \le |x| ,$$

et la limite vaut donc zéro.

d) On a que

$$\frac{|x|^{7/2}|y|^{3/2}}{\left(x^2+y^4\right)\left(x^4+y^2\right)} = \frac{|x|^{7/2}}{\left(x^2+y^4\right)\left(x^4+y^2\right)^{1/4}} \frac{|y|^{3/2}}{\left(x^4+y^2\right)^{3/4}} \; ,$$

et donc

$$\frac{|x|^{7/2}|y|^{3/2}}{(x^2+y^4)\left(x^4+y^2\right)} \le \frac{|x|^{7/2}}{(x^2+0^4)\left(x^4+0^2\right)^{1/4}} \frac{|y|^{3/2}}{\left(0^4+y^2\right)^{3/4}} \le \sqrt{|x|} \ ,$$

ce qui implique que la limite vaut zéro.

Exercice 6.

i) En passant en coordonnées polaires $\left\{\begin{array}{ll} x=r\cos(\varphi) \\ y=r\sin(\varphi) \end{array}\right.$ on a

$$3x^3 - 2y^3 = r^3 (3\cos(\varphi)^3 - 2\sin(\varphi)^3)$$
 et $x^2 + y^2 = r^2$

et donc

$$f(r\cos(\varphi), r\sin(\varphi)) = r\left(3\cos(\varphi)^3 - 2\sin(\varphi)^3\right)$$

et on trouve que pour tout $\varphi \in [0, 2\pi[, |f(x,y)| \le 5r,$ ce qui implique que

$$\lim_{(x,y)\to(0,0)} |f(x,y)| \le \lim_{r\to 0} 5r = 0,$$

et par conséquence

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

Il s'en suit que la fonction $\hat{f}: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\hat{f}(x,y) = \begin{cases} f(x,y), & \text{si } (x,y) \neq (0,0) \\ 0, & \text{si } (x,y) = (0,0) \end{cases}$$

est le prolongement par continuité de la fonction f en (0,0). Le graphe de \hat{f} se trouve à la Fig. 2.

ii) On considère les limites de deux cas particuliers de f:

$$\lim_{x \to 0} f(x,0) = \lim_{x \to 0} \frac{0}{5x^2} = 0 \qquad \text{et} \qquad \lim_{x \to 0} f(x,2x) = \lim_{x \to 0} \frac{2x^2}{x^2} = 2.$$

Par conséquent $\lim_{(x,y)\to(0,0)} f(x,y)$ n'existe pas et la fonction $f:\mathbb{R}^2\to\mathbb{R}$ n'admet donc pas de prolongement par continuité en (0,0) (voir Fig. 3 pour le graphe).

iii) On utilise encore une fois les coordonnées polaires $\left\{\begin{array}{l} x=r\cos(\varphi)\\ y=r\sin(\varphi) \end{array}\right.$. Ainsi

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{r\to 0} \frac{1-\cos(r)}{r^2} = \lim_{r\to 0} \frac{1-\cos(r)^2}{r^2(1+\cos(r))} = \lim_{r\to 0} \left(\frac{\sin(r)}{r}\right)^2 \cdot \frac{1}{1+\cos(r)} = \frac{1}{2}$$

La fonction $\hat{f}: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\hat{f}(x,y) = \begin{cases} f(x,y), & \text{si } (x,y) \neq (0,0) \\ \frac{1}{2}, & \text{si } (x,y) = (0,0) \end{cases}$$

est donc le prolongement par continuité de f en (0,0) (graphe de \hat{f} à la Fig. 4).

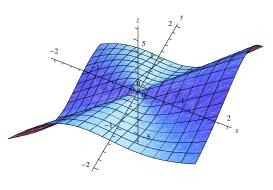


Fig. 2

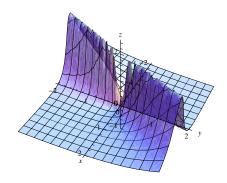


Fig. 3

iv) Comme on a

$$\lim_{t \to 0} f(t, t) = \lim_{t \to 0} t^2 \frac{0}{4t^4} = 0,$$

on devrait avoir $\lim_{(x,y)\to(0,0)} f(x,y)=0$ pour qu'un prolongement par continuité de f en (0,0) existe. Or, en considérant la limite f(2t,t) on trouve

$$\lim_{t \to 0} f(2t, t) = \lim_{t \to 0} 2t^2 \frac{4t^2 - t^2}{(4t^2 + t^2)^2} = \lim_{t \to 0} \frac{6t^4}{25t^4} = \frac{6}{25} \neq 0.$$

Ainsi f ne peut pas être prolongé par continuité au point (0,0) (voir Fig. 5).

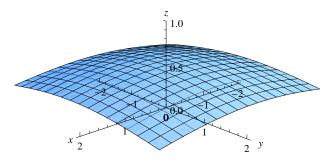


Fig. 4

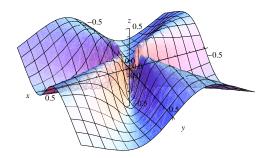


Fig. 5

Exercice 7. (V/F: limites et continuité)

Q1: Soit une fonction $f: D \to \mathbb{R}$ et soit $(x_0, y_0) \in D$ où $D \subset \mathbb{R}^2$ est ouvert. Si

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y)$$

existe, alors f est continue en (x_0, y_0) .

Réponse : faux. L'existence de la limite ne suffit pas, il faut en plus que cette limite soit égale à la valeur de f en (x_0, y_0) , c'est-à-dire que $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$.

Q2: Soit une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ et soit une fonction $g: \mathbb{R}^+ \to \mathbb{R}$ avec $\lim_{r \to 0^+} g(r) = 0$. S'il existe une valeur φ_0 de $\varphi \in [0, 2\pi[$ telle que

$$|f(r\cos(\varphi_0), r\sin(\varphi_0))| \le g(r)$$

pour tout $r \in \mathbb{R}^+$, alors

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

Réponse : faux. Contre-exemple : soit f(x,0) = 0 pour $x \in \mathbb{R}^+$, f(x,y) = 1 sinon, et soit g(r) = 0 pour tout $r \in \mathbb{R}^+$. Alors pour $\varphi = 0$ on a pour tout $r \in \mathbb{R}^+$,

$$0 = |f(r,0)| = |f(r\cos(0), r\sin(0))| \le 0 = g(r),$$

mais la limite $\lim_{(x,y)\to(0,0)} f(x,y)$ n'existe pas.

Q3: Faux. Il ne suffit pas de regarder les limites de la forme

$$\lim_{t \to 0} f(\alpha t, \beta t) = 0$$

(limites le long de droites) pour montrer que

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

ou encore l'existence de cette limite (voir les contre-exemples du cours).

Exercice 8.

La fonction

$$f(x,y) = \begin{cases} 0 & \text{si } (x,y) \in \mathbb{R}^2, \ x \neq 0, \\ 1 & \text{si } x = 0, \end{cases}$$

n'admet pas de limite en (0,0) mais on peut vérifier que pour tout $\alpha \in \mathbb{R}$, $\lim_{t\to 0} f(t, \alpha t^2) = 0$.

7

Exercice 9.

C'est faux. La première limite est une limite épointée dans \mathbb{R} , tandis que la deuxième est une limite épointée dans \mathbb{R}^2 . Prenons par exemple $(x_0, y_0) = (0, 0)$ et considérons la fonction $f: \mathbb{R}^2 \to \mathbb{R}$, définie par

$$f(x,y) = \begin{cases} 0 & \text{si } (x,y) \neq (0,0), \\ 1 & \text{si } (x,y) = (0,0). \end{cases}$$

Alors $\lim_{x\to 0} f(x,0) = 0$ existe, mais $\lim_{(x,y)\to(0,0)} f(x,0)$ n'existe pas.

En effet, dans la première limite on considère la fonction d'une variable $g: \mathbb{R} \to \mathbb{R}$, définie par g(x) = f(x, 0) et on a que g(x) = 0 si $x \neq 0$ et que g(0) = 1, et

$$\lim_{x \to 0} f(x, 0) := \lim_{x \to 0} g(x) = 0.$$

La deuxième limite est dans \mathbb{R}^2 . On considère donc la fonction $h \colon \mathbb{R}^2 \to \mathbb{R}$ définie par h(x,y) = f(x,0) et on a que

$$h(x,y) = \begin{cases} 0 & \text{si } x \neq 0, \\ 1 & \text{si } x = 0, \end{cases}$$

 et

$$\lim_{(x,y)\to(0,0)} f(x,0) := \lim_{(x,y)\to(0,0)} h(x,y).$$

Prenons la suite $(x_n,0)$ avec $x_n \neq 0$ et $\lim_{n \to \infty} x_n = 0$, alors $\lim_{n \to \infty} h(x_n,0) = 0$. D'autre part, si on prend la suite $(0,y_n)$ avec $y_n \neq 0$ et $\lim_{n \to \infty} y_n = 0$ on a $\lim_{n \to \infty} h(0,y_n) = 1$. Donc la limite $\lim_{(x,y)\to(0,0)} h(x,y)$ n'existe pas.