
Statistics for Genomic Data Analysis

Genetic linkage, crossing over, recombination

Genetic markers

Genetic association

Population sub-structure

Genome-wide association studies (GWAS)

[NOTE : the part at the end about multiple testing is REVIEW ;
we saw this already in Lecture 5b]
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Genetic linkage

Genes that are close together on the same chromosome are
said to exhibit linkage

Genes on nonhomologous chromosomes (also far apart on the
same chromosome) assort independently during meiosis

Linked genes, and hence the phenotypic characters they
control, are inherited together because they are located on the
same chromosome

Modern understanding of genetic linkage came from the work
of Thomas Hunt Morgan : showed that two recessive genes in
Drosophila melanogaster : white eye (w) and miniature wing
(m) are X-linked.

Linkage is based on the frequency of crossing over between
the two genes
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Crossing over

Genes on the same chromosome travel through meiosis
together : however, alleles of chromosomally linked genes can
be recombined by crossing over

During prophase of meiosis I, the double-chromatid
homologous pairs (sister chromatids) of chromosomes cross
over with each other and can exchange chromosome segments

This process occurs at the 4-strand stage

Crossovers can result in recombination and the exchange of
genetic material between the maternal and paternal
chromosomes

The recombinant gametes are those that differ from both
haploid gametes that made up the original diploid cell (so
differ from the parental gametes)

Recombination creates genetic diversity
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LD around ancestral chromosome (Kruglyak Fig. 1)
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LD around ancestral chromosome (Kruglyak Fig. 1)
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LD around ancestral chromosome (Kruglyak Fig. 1)
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What is a polymorphism ?

A polymorphism is a difference in DNA sequence among
individuals

Genetic variations occurring in more than 1% of a population
are considered useful for genetic linkage analysis

Single nucleotide polymorphisms (SNPs) are the most
common type of genetic variation among people

Each SNP represents a difference in a single nucleotide : e.g. a
SNP may replace a C with a T in a certain stretch of DNA

Almost all common SNPs have only two alleles

Within a population, the minor allele frequency of a SNP is
the smaller of the two allele frequencies
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A little history
1920s : Blood group markers
1960s : HLA markers
late 1970s – early 1980s : RFLP markers
1980s :
∎ linkage map using RFLP markers [many not very

polymorphic]
∎ applications to Mendelian traits
∎ Lander-Botstein (1986) : most human traits follow

‘complex’ modes of inheritance, suggested LD
(association) mapping

Late 1980s – mid 1990s : PCR-based microsatellite markers
(SSRs) [highly polymorphic]
LD mapping most often done as a followup to linkage to
narrow the genomic region
Most genome scans were linkage studies, but for complex
traits usually difficult to find ’major genes’ [genes with large
effects] → Wanted new approaches 8 / 66



Linkage disequilibrium (LD)

A fundamental notion in association mapping is that of
linkage disequilibrium (LD) between a genetic marker and the
locus that affects the trait under study

LD is the nonrandom association of alleles at two (or more)
loci

Loci are in LD when combinations of alleles occur either more
or less frequently than expected from random formation of
haplotypes based on marginal allele frequencies

LD may be due to selection, random genetic drift, co-ancestry
. . .

Not necessarily due to linkage (and therefore also sometimes
referred to as gametic disequilibrium)

There are several measures available to quantify the strength
of LD
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LD around ancestral chromosome (Kruglyak Fig. 1)
LD around ancestral chromosome (Kruglyak Fig. 1)

D. R. Goldstein (EPFL) BCF Journal Club 4 April 2008 4 / 29
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Example : LD in a bi-allelic system
Example: LD in a bi-allelic system

Table: Frequencies of co-occurrence in a bi-allelic, two-locus system

B b
A pAB pAb pA

a paB pab pa

pB pb

Under independence, pAB = pApB (similarly for all combinations)

Some measures of LD:

– δ = pABpab − pAbpaB

– D = pAB − pApB

– D ′ = D/Dmax, where Dmax = min(pApb, papB) for D > 0,
Dmax = min(pApB , papb) for D < 0

– r 2 = D2

pApapBpb

D. R. Goldstein (EPFL) SIB-BCF Journal Club 3 April 2008 5 / 33

11 / 66



Continuing the stroll down memory lane . . .

1990s

Risch-Merikangas, 1996 : power assoc > power linkage

Linkage : good for low-frequency, large effects

Genomewide association : good for high-frequency,
small-effects

Lander : Common disease - common variant hypothesis

Direct vs indirect mapping approach

∎ Direct : test all functional variants
∎ Indirect : use a dense set of markers and do LD mapping

modes of inheritance, suggested LD (association)
mapping

late 1990s : SNP Consortium (consortium of pharmas +
Wellcome Trust) founded to identify at least 100,000 SNPs
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Mapping by association (Kruglyak Figs. 2, 3Mapping by association (Kruglyak Figs. 2, 3)

D. R. Goldstein (EPFL) BCF Journal Club 4 April 2008 6 / 29
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Entering into this millenium !

SNPs now preferred marker for LD mapping

∎ not as polymorphic as microsatellites, BUT :
∎ highly abundant, can create map with a density not

achievable by other marker types
∎ easy to genotype in a high throughput manner
∎ low mutation rates
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Genetic association study
Most commonly, compare genetic make-ups of cases and
controls
∎ Candidate genes, selected based on knowledge of PT
∎ Genetic markers, e.g. SNPs

Would like to find narrow regions of the genome associated
with PT

Markers must be spaced densely enough to be in LD with the
(potentially disease-associated) variants that are not
genotyped (∼ .5–1 million SNPs, depending on pop. origin)

The essential idea is that a marker in strong LD with a disease
locus is expected to be located nearby

Reasons explaining observed associations :
∎ chance or artifact (e.g. confounding, selection bias)
∎ LD between marker locus and another locus that directly

affects PT expression
∎ allele directly affects PT expression (causal)
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NIH : GWAS definition

A genome-wide association study (GWAS) is defined as any
study of genetic variation across the entire human genome
that is designed to identify genetic associations with
observable traits (such as blood pressure or weight), or the
presence or absence of a disease or condition

To meet the definition of a GWAS, the density of genetic
markers and the extent of linkage disequilibrium should be
sufficient to capture (by the r2 parameter) a large proportion
of the common variation in the genome of the population
under study, and the number of samples should provide
sufficient power to detect variants of modest effect

The trait can be qualitative or quantitative trait

∎ different study designs
∎ different analysis method
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Typical GWAS has 4 parts

1 Select (many) individuals with the disease/trait and suitable
comparison group

2 DNA isolation, genotyping, and quality assessment

3 Statistical tests for associations between the SNPs passing
quality thresholds and the disease/trait

4 Replication of identified associations in an independent
population sample and/or examination of functional
implications experimentally

Common study designs :

∎ Case-control design
∎ Parent-offspring trio design
∎ Cohort study
∎ Multistage study
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Case-control study

Usually population-based, retrospective

Comparison between group with the phenotype (PT) of
interest (e.g. disease) and group without

Outcome is measured before ‘exposure’ (e.g. before
genotyping)

Controls selected on the basis of not having the PT

Good for rare PTs

Relatively inexpensive

Smaller numbers required than for (prospective) cohort study

Faster to complete than cohort study

Prone to bias

∎ selection bias
∎ recall/retrospective bias

Care needed to avoid confounding
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Parent-offspring trio study

(Parent-offspring) trio design : affected case plus both parents

phenotype offspring (don’t need parent phenotypes)

genotype trio

TDT : test for linkage in the presence of association
(composite null)

compare transmission of alleles from heterozygous parents to
offspring

not susceptible to effects of population stratification

sensitive to genotyping error → need high quality genotyping
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Transmission Disequilibrium Test (TDT)
Transmission Disequilibrium Test (TDT)

Table: Combinations of transmitted and untransmitted marker alleles

Non-transmitted
Transmitted M1 M2 Total

M1 a b a + b
M2 c d c + d

Total a + c b + d 2n

TDT is just the McNemar test, a test on 2× 2 table for the difference
between paired proportions (e.g., in studies where patients serve as
their own control, or with ‘before and after’ design)

The classic TDT statistic is

χ2
TD = (b − c)2/n,

where n = b + c is the number of informative (heterozygous) parents

D. R. Goldstein (EPFL) BCF Journal Club 4 April 2008 11 / 29
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Other study designs

Cohort study

∎ collect baseline information in a large number of
individuals

∎ more expensive and time-consuming than case-control
∎ participants may be more representative than case-control
∎ often include a vast array of health-related characteristics

and exposures for which genetic associations can be
sought (‘fishing expedition’)

Multistage designs

∎ scan one set of individuals
∎ followup smaller number of loci in second set of

individuals
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Selecting study participants

Usual caveats apply

Need careful trait assessment (avoid misclassification)

Controls should be from same population as cases, and be at
risk of developing the trait

Not uncommon (but imho not good) for controls to be
selected from blood donors

∎ quality difficult to ensure
∎ followup difficult/impossible

Assessment of comparability of cases/controls

∎ Adjust for important differences in the analysis where
possible

Assess population structure (crude but usual to test for
deviation from HWE)

Adjust/account for substructure
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BREAK
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Hardy-Weinberg Equilibrium (HWE)

Five assumptions :

1 Random mating (with respect to the genetic locus)
2 Infinite population size (i.e. no genetic drift, which reduces

genetic variability)
3 No mutations
4 No genetic migration (permanent movement of alleles from

one population to another, usually by dispersal of individuals)
5 No natural selection

Then for a two allele locus, with alleles A and a, where
p(A) = p and p(a) = 1 − p = q, the genotypes AA, Aa and aa
occur in proportions p2, 2pq and q2
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Population substructure in case-control study

Substructure introduces deviation from HWE (but testing for
deviation from HWE not very powerful)

To analyze case-control data, assume

∎ Genetic homogeneity : all individuals have same risk
∎ Statistical independence between individuals

Substructure violates analysis assumptions

Mini-controversy : is the problem exaggerated ? ?

∎ one argument is that this is flawed epidemiological
practice rather than just poor genetic matching

∎ when addressed as part of study design, heterogeneity is
usually not seen to be extensive

∎ practically speaking : your grant app/paper/etc will be
rejected if you don’t address this issue !
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Population substructure : why should we account for it ?

Violation of the assumptions can adversely affect inference :

Can severely bias association studies

Spurious (false positive) associations due to confounding

∎ differences in disease prevalence between cases and
controls along with variations in allele frequency between
groups

False negative associations (e.g. Simpson’s paradox) –
admixture can also appear to mask, change, or reverse true
genetic effects

Simpson’s Paradox refers to the reversal of the direction of a
comparison or an association when data from several groups
are combined to form a single group
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Example of spurious association : NIDDM in Pima Indians
Example of spurious association: NIDDM in Pima Indians

The U. S. Pima Indians have the highest reported prevalence of NIDDM of
any population in the world

D. R. Goldstein (EPFL) SIB-BCF Journal Club 3 April 2008 10 / 33
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Example, contd

Association study of HLA haplotype (Gm3 ;5,13,14) and
NIDDM in U. S. Pima Indians

Confounding due to admixture of Caucasian and Pima Indian
ancestry

Failure to control for ethnic origin introduced bias :

∎ Diabetes prevalence and frequency of the haplotype both
much higher in individuals of American Indian ancestry
than in those of European ancestry

∎ Association of Gm3 ;5,13,14 haplotype with reduced risk
of NIDDM attributable to ancestral population of origin
rather than to LD between the disease and marker loci

Observed association disappeared when analysis restricted to
full-heritage Pima Indians
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Example of spurious association : NIDDM in Pima Indians
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Avoiding population stratification

Test whether cases and controls differ at unlinked markers

Match cases and controls on ethnicity, geographic location,
etc.

Control for stratification with family-based controls

∎ Lower power
∎ Can also be difficult to recruit enough family members

Account for stratification in analysis

∎ Genomic control (GC) (lower power)
∎ Structured association (STRUCTURE) : define

underlying subgroups based on a set of genomic markers,
test for disease association by combining subgroup
association results

∎ EIGENSTRAT : based on PCA
∎ Population Stratification Association Test (PSAT) :

permutation test-based approach
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Genotyping and QC in GWAS
GT error can be an important cause of spurious association

(Sampson, Zhao : test using signal rather than called GT)

Assess GT quality
∎ per sample (individual)
∎ per SNP

Per sample checks
∎ sample identity checks to avoid sample mix-ups
∎ minimum rate of successfully called GTs (e.g. >90%)

After bad samples removed, per SNP checks
∎ high SNP call rate (e.g. > 95%)
∎ minor allele frequency (MAF) > 1%
∎ severe violations of HWE
∎ Mendelian inheritance errors (in family studies)
∎ concordance rates in duplicate samples (e.g. > 99.5%)

Standard followup to use a different technology to
re-genotype the most strongly associated SNPs
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GWAS analysis
Most studies test each single locus one at a time
∎ highly correlated test results

Avoid assessing association between case/control status and
allele
∎ invalid when HWE is violated in a combined population

Do assess association between case/control status and
genotype
(Cochran-)Armitage trend test most commonly done
Multiple testing
∎ many studies have used Bonferroni correction, although it

is well-known to be conservative in the presence of LD
(positive correlation between test results)

∎ could use FDR instead
∎ perm tests account for LD, can have high computational

cost
∎ another possibility is estimating the effective number of

independent tests and Bonferroni-adjust for that number 32 / 66



More on analysis
Several statistical methods for association mapping (including
GLMs like logistic regression) require genetic model of
inheritance
For instance, in a Cochran-Armitage test or score statistics
from logistic regression, an additive model can be imposed by
giving genotype weights 0, 1 and 2, depending on the number
of copies of the minor allele
∎ assuming a model is more powerful when (at least

approximately) true
∎ can have very low power when the true model is different

Haplotype-based tests
∎ usually done as followup for highly associated regions
∎ haplotype block as the smallest unit
∎ can use tagging SNPs as surrogates for other markers in

a block
∎ reduced number of markers needed

Emerging area : data mining for interaction analysis 33 / 66



Haplotype
Haplotype

D. R. Goldstein (EPFL) BCF Journal Club 4 April 2008 17 / 29
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Presentation of results : Manhattan plot
Presentation of results: Manhattan plot

D. R. Goldstein (EPFL) BCF Journal Club 4 April 2008 18 / 2935 / 66



Presentation of results : QQ plot for p-values
Presentation of results: QQ plot for p-values

D. R. Goldstein (EPFL) BCF Journal Club 4 April 2008 19 / 29
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Presentation of results : LD display
Presentation of results: LD display

D. R. Goldstein (EPFL) BCF Journal Club 4 April 2008 20 / 29
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Replication : criteria

Sample large enough to distinguish proposed effect from no
effect

Carry out in independent data sets

Analyze same PT (or very similar one)

Study similar population, describe important differences

Similar magnitude of effect and significance should be
demonstrated, in the same direction, with the same SNP
/SNP high LD (r2 ≈ 1)

Statistical significance should first be obtained using the
genetic model reported in the initial study

When possible, a joint or combined analysis should lead to a
smaller p-value than the original

Strong rationale for selecting replication SNPs, including LD
structure, putative functional data or published literature

Replication reports should be as detailed as initial study report
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Replication and functional studies

Try to replicate result in independent population

Usually start out trying to be as similar as possible to the
original study

Branch out : different phenotypes, population, study design

Lack of reproducibility

∎ population stratification
∎ phenotype differences
∎ selection biases
∎ genotyping errors
∎ . . .

Functional studies to elucidate disease mechanisms
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Limitations of GWA studies

Potential for false-positive results

Lack of information on gene function

Insensitivity to rare variants and structural variants

Requirement for large sample sizes

Possible biases due to case and control selection and
genotyping errors

Difficulty identifying G × E interactions due to limited
information on environmental exposures and other non-genetic
risk factors

Difficult to assess reports (due to journal page limits,
incomplete reporting)

false negatives

Clinical applications are still a (long ?) way off
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BREAK
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Locating a point in the plane

We can describe the location of a point in the plane by saying
how much we move in the horizontal (X) direction, then how
much we move in the vertical (Y) direction

As an example, think of describing how to get to some
particular place from where you are (for example, how to get
to CE 105 from MA 11)

One way to do this is to say how far you go NORTH, then
how far you go EAST
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Variance-Covariance matrix

Consider a data set consisting of p variables measured on n
cases

How the variables change together is summarized by the
variance-covariance matrix (or by the correlation matrix)

For a simple example (just 2 variables) :
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Principal Component Analysis (PCA)

One aim of principal component analysis (PCA) is to reduce
the dimensionality from p variables

Try to explain the variance-covariance structure through linear
combinations (principal components) of the (original) variables

Another aim is to interpret the first few principal components
in terms of the original variables to give greater insight into
the data structure
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More on PCA

Each principal component (PC) accounts for a certain amount
of the variation in the data

The 1st PC is the linear combination that accounts for
(‘explains’) the most variation

Subsequent PCs account for as much as possible of the
remaining variation, while being uncorrelated with earlier PCs

Aubergine

Where do these come from ?
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What does this have to do with PCA ?

Consider the variance-covariance matrix A

The eigenvectors of A provide sets of coefficients defining p
linear functions of the original variables

These functions are the PCs

If A has eigenvalues λ1, λ2, . . . λp, then the PCs have
variances λ1, λ2, . . . λp and zero covariances
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Cautions

Sometimes used as a method for simplifying data because PCs
associated with smaller eigenvalues have smaller variances and
might therefore be ‘ignored’

This assumption requires caution

When variables are on different scales, it is customary to use
the correlation matrix (rather than the covariance matrix)

These two formulations give different results : the eigenvalues
for the two matrices are not related in a simple way

Theory not simple for correlation-based PCA

47 / 66



How many PCs ?

There are a few ways to decide how many PCs to retain

Some common methods are :

∎ retain the number required to explain some percentage of
the total variation (e.g. 90%)

∎ number of eigenvalues > average (1 if correlation matrix
is used)

∎ look for ‘elbow’ in scree plot
∎ compromise between these

The scree plot shows proportion of variance (or just variance)
explained by each component
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R : scree plots
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PCA to assess data quality
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Multiple testing problem

Simultaneously test m null hypotheses

Null hypothesis Hj ∶ no association between outcome measure
j and the covariate

For high-dimensional data analysis (e.g. genomic data), there
is a large multiplicity issue

Increased chance of at least one false positive

Would like some sense of how ‘surprising’ the observed results
are
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Hypothesis Truth vs. Decision : m tests
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Type I (false positive) error rates

Per-family Error Rate

PFER = E(V )

Per-comparison Error Rate

PCER = E(V )/m

Family-wise Error Rate

FWER = p(V ≥ 1)

False Discovery Rate

FDR = E(Q), where

Q = V /R if R > 0 ; Q = 0 if R = 0
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Strong vs. weak control

All probabilities are conditional on which hypotheses are true

Weak control refers to control of the Type I error rate only
under the complete null hypothesis (i.e. all nulls true)

Strong control refers to control of the Type I error rate under
any combination of true and false nulls

In general, weak control without other safeguards is
unsatisfactory
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Adjusted p-values (p∗)

Test level (e.g. 0.05) does not need to be determined in
advance

Some procedures most easily described in terms of their
adjusted p-values

Usually easily estimated using resampling

Procedures can be readily compared based on the
corresponding adjusted p-values
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A little notation

For hypothesis Hj , j = 1, . . . ,m

∎ observed test statistic : tj
∎ observed unadjusted (nominal) p-value : pj

Ordering of observed (absolute) tj : {rj} such that

∎ ∣ tr1 ∣≥∣ tr2 ∣≥ . . . ≥∣ trm ∣
Ordering of observed (absolute) pj : {rj} such that

∎ ∣ pr1 ∣≤∣ pr2 ∣≤ . . . ≤∣ prm ∣
Denote corresponding RVs by upper case letters (T ,P)
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Methods for obtaining p∗

Single-step adjustment

∎ p-values compared to a predetermined value
∎ same adjustment for every p-value

Step-down adjustment

∎ p-values adjusted from smallest to largest
∎ when find ‘large’ p-value, that null and all nulls with

larger p-values are not rejected

Step-up adjustment

∎ p-values adjusted from largest to smallest
∎ when find ‘small’ p-value, that null and all nulls with

smaller p-values are rejected
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Control of the FWER

Bonferroni single-step adjusted p-values

p∗j = min(mpj ,1)

Sidak single-step (SS) adjusted p-values

p∗j = 1 − (1 − pj)m

Sidak free step-down (SD) adjusted p-values

p∗
(j) = 1 − (1 − pj)m−j+1
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Control of the FWER

Holm (1979) step-down adjusted p-values

p∗rj = maxk=1,...,j{min((m − k + 1)prk ,1)}

∎ Intuitive explanation : once H(1) rejected by
Bonferroni, there are only m − 1 remaining H0 that might
still be true (then do another Bonferroni correction, etc.)

Hochberg (1988) step-up adjusted p-values (Simes inequality)

p∗rj = mink=j ,...,m{min((m − k + 1)prk ,1)}
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Control of the FWER

Westfall and Young (1993) step-down minP adjusted p-values

p∗rj = maxk=1,...,j{P(minl∈{k,...,m} Prl ≤ prk ∣ HC
0 )}

Westfall and Young (1993) step-down maxT adjusted p-values

p∗rj = maxk=1,...,j{P(maxl∈{k,...,m} ∣ Trl ∣ ≥ ∣ trk ∣ ∣ HC
0 )}
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Control of the FDR

Benjamini and Hochberg (1995) : step-up procedure that
controls the FDR under some dependency structures

p∗rj = mink=j ,...,m{min([m/k]prk ,1)}

Benjamini and Yuketieli (2001) : conservative stepup
procedure that controls the FDR under general dependency
structures

p∗rj = mink=j ,...,m{min(m ∑ j = 1m[1/j]/k]prk ,1)}

Yuketieli and Benjamini (1999) : resampling-based adjusted
p-values for controlling the FDR under certain types of
dependency structures
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R : multiple testing

The BioConductor package multtest has implemented a
number of adjustments for multiple hypotheses

The package vignette reviews the functionality

For gene expression data, limma also adjusts for multiplicity

The BioConductor package qvalue computes q-values and
various plots http://www.bioconductor.org
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What about pre-screening ?

To get around the problem of loss of power when adjusting,
some have recommended ‘prescreening’ outcome values and
only testing those showing sufficient variation

This is an example of ‘data snooping’ : looking at the data
before deciding what to test

Unless the screening statistic is independent of the test
statistic under the null, the Type I error rate will not be
correct

In addition, any p-value for the test may be difficult to
interpret
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Controversies

Whether multiple testing methods (adjustments) should be
applied at all

Which tests should be included in the family (e.g. all tests
performed within a single experiment ; define ‘experiment’)

Alternatives

∎ Bayesian approach
∎ Meta-analysis
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Situations where inflated error rates are a concern

It is plausible that all nulls may be true

A serious claim will be made whenever any p < 0.05 (say) is
found

Much data manipulation may be performed to find a
‘significant’ result

The analysis is planned to be exploratory but wish to claim
‘significant’ results are real

Experiment unlikely to be followed up before serious actions
are taken
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Pitfalls in hypothesis testing

Even if a result is ‘statistically significant’, it can still be due
to chance

Statistical significance is not the same as practical importance

A test of significance does not say how important the
difference is, or what caused it

A test does not check the study design

If the test is applied to a nonrandom sample (or the whole
population), the p-value may be meaningless

Data-snooping makes p-values hard to interpret
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