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DNA sequencing

m (Automated) Sanger sequencing

m ‘first-generation’ technology
m F. Sanger, 1977
m Process :

m bacterial cloning or PCR

m template purification

m labelling of DNA fragments using the chain termination
method with energy transfer, dye-labelled
dideoxynucleotides and a DNA polymerase

m capillary electrophoresis

m fluorescence detection

m Data : four-colour plots that reveal the DNA sequence
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Sanger sequencing

ARAR

THE SANGER METHOD: Single-stranded DNA is
pdet mixed with a primer and spiit into four aliquots, each

containing DNA polymerase, four deoxyribonucleotide triphos-
phates and a replication terminator. Each reaction proceeds until a replication-terminating
nucleotide is added. The mixtures are loaded into separate lanes of a gel and electrophoresis is used to
separate the DNA fragments. The sequence of the original strand is inferred from the results. (See p. 40
for an illustration of a high-speed DNA sequencer.)
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Base-calling

CCATCACGBGTATGCTTECTGGGGAGAA

CATCACGTATGCT

R A RN C, S TCCTOGOOAE AR
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Next-generation sequencing

Several newer sequencing technologies

m ‘Next-generation sequencing’ (NGS data)
m ‘Ultra high-throughput sequencing’ (UHTS data)

These newer technologies use various strategies that rely on a
combination of template preparation, sequencing and imaging,
and genome alignment and assembly methods

Data : four-colour plots that reveal the DNA sequence

Major advance : ability to produce a large amount of data
relatively cheaply

Expands experimental possibilities beyond just determining
the order of bases
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Limitations of microarrays

m Microarrays provide powerful technology to generate
high-throughput data in several domains : :
B gene expression, genotyping, transcription factor binding

(ChIP-chip)

m However, they also have limitations :

require a priori knowledge of the genome
cross-hybridization between similar sequences restricts
microarray analysis to non-repetitive fraction of genome
cross-hyb complicates analysis of related genes,
alternatively spliced transcripts, etc.

relatively noisy, limited dynamic range : challenges in
detection of low-abundance sequences, resolution of
changes in high-abundance sequences

may need relatively large amounts of material, relying
on amplification by PCR (can introduce bias)
reproducibility can be difficult to establish due to the
variety of platforms
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Some advantages of NGS

Knowledge of genome annotation not required

Material directly sequenced rather than interrogated by
hybridization to user-defined sequences == removes (some)
experimental bias and cross-hybridization issues
Quantification based on counting sequence tags rather than
relative measures between samples, thereby increasing the
dynamic range of signal

Require less starting material, reducing (or eliminating) relianc
on PCR amplification

Can simultaneously monitor RNAs from known and undefined
genomic features (promoters, exons, non-coding RNAs
(ncRNA) and enhancers)

Hope is that reproducibility/combinability of results will be
improved (since all data of same primary type — sequence
counts)
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Applications of NGS

Sequence assembly (original application)

Resequencing : The sequencing of part of an individual’s
genome in order to detect sequence differences between the
individual and the standard genome of the species

Gene expression : RNA-Seq

SNP discovery and genotyping

Variant discovery and quantification
Transcription factor binding sites : ChlP-Seq
Measuring DNA methylation
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Death of microarrays ?

Over the past few years, there have been several articles
announcing the death of microarray technology
m Are sequencing technologies displacing microarrays ?
m To some degree yes, BUT : the technologies are rather
complementary
m Cost differences (microarrays still cheaper)
For a simple gene expression study experiment, microarrays
are generally chosen (quick, low cost)
For a study where a large dynamic range of expression,
sequencing technologies would be preferred (increased
sensitivity)
Rule of thumb :

® when sensitivity isn't limiting : microarrays

B when sensitivity is important : (short read) sequencing

technologies
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NGS data generation

m Sequencing technologies incorporate methods that we can
class as
B template preparation
B sequencing and imaging
m data analysis
m Combination of specific protocols distinguishes different
technologies
m Major technologies :
m * lllumina HiSeq (older : Solexa)
m 454 (Roche)
m Applied Biosciences SOLiD
m * Pacific Biosciences SMRT (single molecule real-time)
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Template preparation

Need robust methods capable of producing a representative,
non-biased source of nucleic acid material from the genome
under investigation

Clonally amplified vs. single-molecule templates

Current methods generally involve randomly breaking genomic
DNA into smaller sizes

Templates created from the pieces

Typically, the template is attached or immobilized to a solid
surface or support

The immobilization of spatially separated template sites allows
thousands to billions of sequencing reactions to be performed
simultaneously
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Template preparation

e Pacific Biosciences, Life/ Visigen, LI-COR Biosciences
Single molecule: polymerase immobilized j

Bridge amplification
Thousands of primed, single-molecule templates
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Sequencing and imaging

Fundamental differences in sequencing different template types

Clonal amplification results in a population of identical
templates the undergo the sequencing reaction

Once imaged, the observed signal is a consensus of the
nucleotides or probes added to the identical templates for a
given cycle

Signal dephasing, which occurs with step-wise addition
methods, increases fluorescence noise, causing base-calling
errors and shorter sequence reads == need cycle efficiency

(not an issue with single-molecule templates)

Single molecules subject to different types of errors
(e.g. deletion errors due to quenching effects between
adjacent dye molecules)
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lllumina sequencing

a Illumina/Solexa — Reversible terminators
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Comparison of sequencing technologies

Platform Library/ NGS Read Run Gb Machine Pros Cons Biological
template  chemistry length time per cost applications
preparation (bases) (days) run (US$)

Roche/454's Frag,MP/  PS 330* 035 045 500000 Longerreads Highreagent Bacterialand insect

GSFLX emPCR improve cost; high genome de novo

Titanium mapping in error rates assemblies; medium

repetitive inhomo- scale (<3 Mb) exome

regions; fast polymer capture; 16Sin

run times repeats metagenomics
Illumina/ Frag,MP/  RTs 750r  4%,9° 18%, 540000 Currentlythe Low Variant discovery
Solexa's GA, ~ solid-phase 100 355 mostwidely  multiplexing by whole-genome

used platform  capabilityof  resequencing or

in the field samples whole-exome capture;

gene discovery in
metagenomics

Life/APG's Frag, MP/ Cleavable 50 7%,14°  30%, 595000 Two-base Long run Variant discovery
SOLID3 emPCR probe SBL 508 encoding times by whole-genome
provides resequencing or
inherent error whole-exome capture;
correction gene discovery in
metagenomics
Polonator MP only/ Non- 26 5% 12° 170,000 Least Usersare Bacterial genome
G.007 emPCR cleavable expensive requiredto  resequencing for
probe SBL platform; maintain variant discovery
opensource  and quality
to adapt control
alternative reagents;
NGS shortest NGS
chemistries read lengths.
Helicos Frag,MP/  RTs 32* 8t 378 999,000  Non-bias Higherror  Seq-based methods
BioSciences  single representation rates
HeliScope  molecule of templates  compared

for genome with other
and seq-based  reversible
applications  terminator

chemistries
Pacific Frag only/ Real-time  964* N/A N/A~ N/A Has the Highest Full-length
Biosciences  single greatest error rates transcriptome
(target molecule potential compared sequencing;
release: for reads with other complements other
2010) exceeding NGS resequencing efforts
1kb chemistries  in discovering large

structural variants and
haplotype blocks
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Data analysis pipeline

Data are counts of short sequences (called ‘reads’)
Quality control of data

Match to reference sequence, read mapping
Count/summarize number of reads per feature
Statistical analysis (depends on the specific application)

Next week, we will consider the problem of identifying
differential gene expression from RNA-seq data
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BioConductor sequencing resources

IRanges, GenomicRanges, genomeIntervals : for
range-based (e.g., chromosomal regions) calculation, data
manipulation, and general-purpose data representation

Biostrings : for alignment, pattern matching (e.g., primer
removal), and data manipulation of large biological sequences
or sets of sequences

ShortRead, Rsamtools : for file I/O, quality assessment, and
high-level, general purpose data summary

rtracklayer : for import and export of tracks on the UCSC
genome browser

edgeR, DESeq, baySeq, DEGseq, Genominator : differential
expression

Use biocViews hierarchy to discover other packages :
Software : AssayTechnologies : HighThroughputSequencing
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Modeling overview

m Want to capture important features of the relationship
between a (set of) variable(s) and one or more response(s)

m Many models are of the form

g(Y) =f(x) +error

m Differences in the form of g, f and distributional assumptions
about the error term
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Examples of models

Linear: Y =0y + Bix+¢

Linear : Y = fBg + Bix + fox® + ¢
(Intrinsically) Nonlinear : Y = axx)x + €
Generalized Linear Model (e.g. Binomial) :

log 15 = Bo + Sux + faxo

Proportional Hazards (in Survival Analysis) :

h(t) = ho(t) exp(5x)
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Linear modeling

m A simple linear model : E(Y) = 5o + S1x
m Gaussian measurement model : Y = g + f1x + €, € N(0,02)

m More generally : Y = XS +¢, where Yisnx1l, Xisnxp, 8is
px1, eis nx1, often assumed N(0,0%/,xp)
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Analysis of designed experiments

m An important use of linear models

m Define a (design) matrix X so that for response variable Y :

E(Y) = X5,
where (3 is a vector of parameters (or contrasts)

m Many ways to define design matrix/contrasts
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Model fitting

m For the standard (fixed effects) linear model, estimation is
usually by least squares

m Can be more complicated with random effects or when
x-variables are subject to measurement error as well
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Model checking

m Examination of residuals

m Normality

m Time effects

m Nonconstant variance
m Curvature

m Detection of influential observations
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Linear regression model (again)

Linear model
Y = Bo+ Bix1 + Boxo + -+ Bixk + €, €~ N(0,0?)
Another way to write this :
Y~ N(p,0%), o= Bo+ Brxa + Baxa + -+ Bioxi

Suitable for a continuous response
NOT suitable for a binary response
NOT suitable for a count data
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Modified model

m Instead of modeling the response directly, could instead model
some function of the response (here, a count)

m i.e., Instead of modeling the expected response directly as a
linear function of the predictors, model a suitable
transformation

m For count data, this is often taken to be the /og transformation
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Count response in a linear model

In a standard linear model, the response variable is modeled as
a normally distributed

However, if the response variable is a count, it does not make
sense to model the outcome as normal

Generalized linear models (GLMs) are an extension of linear
models to model non-normal response variables

A GLM consists of three components :

m A random component, specifying the conditional
distribution of the response variable, Y;, given the
values of the explanatory variables in the model

m A linear predictor

m A smooth and invertible linearizing link function

We might consider Poisson regression for a count response
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Generalized linear models : some theory

Allows unified treatment of statistical methods for several
important classes of models

Response Y assumed to have exponential family distribution :

f(y) =expla(y)b(0) + c(0) + d(y)]
For a standard linear model
Y = Bo+ Bix1 + ... + Bixk + €, with e ~ N(0,02)
The expected response is E[Y | x] = Bo + B1x1 + ... + Brxk
Let i denote the linear predictor = By + P1x1 + .. . + BrXk
For a standard linear model, E[Y | x] =17

In a generalized linear model, there is a link function g

between 77 and the expected response :
g(E[Y[x])=n

For a standard linear model, g(y) =y (identity link)

28 /36



Link function for count data

We can model the count data Y; ~ Pois(u;), i=1,...,n

Want to relate the mean p; to one or more covariates (for
example, treatment/control status)

A convenient link function in this case is the log :

log p1i =1 =x{ B
Using a log link ensures that the fitted values of u; will remain
in the parameter space [0, o)

A Poisson model with a log link is sometimes called a
log-linear model
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Link function : examples

Link

Family Name

binomial Gamma gaussian inverse.gaussian poisson

logit
probit
cloglog
identity
inverse
log
1/mu~2
sqrt

D
°

°
O
.
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Variance function

m The Poisson distributions are a discrete family with probability
function indexed by the rate parameter ;>0 :

e_uuy
p(y) = o y=0,1,2,...

m Under the Poisson model :
E[Yi] = Var(Y;) = wi

m Real data are often overdispersed, exhibiting more variation
than allowed by the Poisson model
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Variance function

Overdispersion usually handled with an alternative model :

m Quasi-Poisson Model : Assume Var(Y;) = ¢ ui; and estimating
the scale parameter ¢

m Zero-Inflated Poisson Model : for modeling the case when
there are too many '0" values

m Negative Binomial Model : Can arise from a two-stage
model :
Yi~ Pois(pi)  pix~T(pifw, w)

Then Y; ~ NegBin, with E[Y;] = p; and Var(Y;) = p; +,u,2/w
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Analogous to linear regression

m The link function g has many of the desirable properties of a
linear regression model :
m Mathematically convenient and flexible
m Can meaningfully interpret parameters
m Linear in the parameters
m A difference : Error distribution not normal
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Fitting the model

For linear regression, typically use least squares

For count data, the ‘nice’ statistical properties of least squares
estimators no longer hold

The general estimation method that leads to least squares (for
normally distributed errors) is maximum likelihood

Write out the likelihood, take the derivative, set equal to zero
and solve

Estimating equations typically nonlinear functions of the
regression parameters so must be solved numerically (IRLS)
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Assessing model fit

In linear regression, an anova table partitions SST, the total
sum of squared deviations of observations about their mean,
into two parts :
m SSE, or residual (observed - predicted) sum of squares
m SSR, or regression sum of squares

Large SSR suggests the explanatory variable(s) is(are)
important

Use same guiding principle in Poisson regression : compare
observed response to predicted response obtained from models
with /without the variable(s)

Comparison based on log likelihood function
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Differential gene expression for NGS data

Several BioConductor packages for identifying differential
expression from NGS data

These mostly use the negative binomial model, since the
counts are typically over-dispersed compared to the Poisson
model

Next week, we will look more closely at the approach used in
the edgeR package

edgeR uses an overdispersed Poisson model to account for
both biological and technical variability, and uses empirical
Bayes methods to moderate the degree of overdispersion
across transcripts

This is the same approach that we have already seen in 1imma
(same developer group)
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