Statistics for Genomic Data Analysis

Affymetrix signal quantification,
Bayesian estimation and IDE

http://moodle.epfl.ch/course/view.php?id=15271
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Affymetrix GeneChip Probe Arrays

Hybridized Probe Cell
GeneChip Probe Array

Single stranded,
labeled RNA target

Oligonucleotide probe

24um

Millions of copies of a specific
oligonucleotide probe

>200,000 different
complementary probes

Image of Hybridized Probe Array
Compliments of D. Gerhold
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Array design

o GeneChip® Expression Array Design
probe —

' mRNA reference sequence

—)

~ = - — = e —_—

S S Se S5 Se DSe = S — — -
Spaced DNA probe pairs
Reference sequence / \ P p p

TGTGATGGTGGGAATGGGTCAGAA?GEGACTCCTATGTGGGTGACGAGGCC

TTACCCAGTCTTCICTGAGGATACACCCAC Perfect Match Oligo
TTACCCAGTCTTGICTGAGGATACACCCAC  Mismatch Oligo

Perfect match probe cells
Fluorescence Intensity Image /

PM ——[

Mismatch probe cells

Figure 1-3 Expression tiling strategy

probe set = collection of probe pairs;
There are tens of thousands of probe sets per chip
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Image analysis

= About 100 pixels per
probe cell

= These intensities
are combined to
form one humber
representing
expression for the
probe cell oligo
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Artifacts in microarrays

= We are interested in finding true biologically
meaningful differences between sample types

= Due to other sources of systematic variation,
there are also usually artifactual differences

= Sources of artifacts include:
- batch effects
- hybridization artifacts
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Looking for artifacts

= Exploratory data analysis (EDA) is an
important component of microarray data
preprocessing

= EDA involves identifying data artifacts

= We will use several types of plots for data
visualization, primarily

- scatterplots
- boxplots
- spatial plots/pseudo-images
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EXxpression on array 2
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Expression on array 2
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Expression data from 2 arrays
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Expression on array 2 (log2)

Take logs...

log2 Expression data from 2 arrays
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Expression on array 1 (log2)

I

Expression on array 2 (log2)
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.. and rotate

MA plot MA plot
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I I I I I I
2 4 6 8 10 12 2 4 6 8 012
A

A
= M = ‘minus’ = log2 (expression 2) - log2 (expression 1)
= A = ‘average’ = [log2 (expression 1) - log2 (expression2)]/2
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smoothScatter

MA plot MA plot
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Quantiles

= The p™ guantile is the number that has the
proportion p of the data values smaller than it

area = 30%

5.53 = 30 percentile
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Five-number summary and boxplot

= The 25'™(Q,), 50t (median), and 75 (Q5)
percentiles divide the data into 4 equal
parts; these special percentiles are called
quartiles

= An overall summary of the distribution of
variable values is given by the five values:

Min, Q;, Median, Q;, and Max

= A boxplot provides a visual summary of this
five-number summary
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Sample boxplot
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Measuring expression

= Summarize fluorescence intensities from
~11-20 PM,MM pairs (probe level data) into
one number for each probe set (‘gene’)

= Call this number a measure of expression
(ME)
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A few expression measures

MAS 5.0/6C0OS - older Affymetrix
PLIER - (Hubbell, newer Affymetrix)
Model Based Expression Index (MBEIL)

- Li-Wong method, implemented in dChip
(windows executable)

Robust Multichip Analysis (RMA)

- Irizarry et al., Bolstad et al.;
implemented in R package affy

- gcrma (Wu et al)
VSN (Huber et al., Rocke)
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RMA

Use only PM, ignore MM (variant: gcrma)
Background correct PM on raw intensity scale
Quantile Normalization of bg-corrected PM*
Assume additive model (on log, scale):

log, normalized(PM;*) = a; + b; + ¢;;

Estimate chip effects (log gene expression) g,
and probe effects b;using a robust method

- Median polish - quick
- robust linear model - yields quality diagnostics
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Why ignore MM values?

= The MM values have information about both
sighal and noise

= Using it without adding more noise is challenging
and is a topic of current research (gcrma)

= It should be possible to improve the BG
correction using MM, without having the noise
level increase greatly
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Background model

= Model observed PM intensity S as the
sum of a signal X and background,
S5=X+Y, where

- X is exponential (o)
- Y is Normal (u, 0%)
- X, Y independent random variables

= BG adjusted values are then E(X|S=s)

I




Background model pictorially
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PM data on log, scale

histogram of log{PM) with fitted model
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Quantile normalization

= The purpose of normalization is to remove
artifactual differences between arrays
(e.g. differences in total intensity)

= Quantile normalization makes the distribution
of probe intensities the same for every chip

= The normalization distribution is chosen by
averaging each quantile across chips

= After normalization, variability of expression
measures across chips reduced

= (this results in a normalization that is
probably overly conservative)
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Quantile normalization: pictorially

Density of PM probe intensities for Spike-In chips
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A e After Quantile Normalization

Density
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MA plots of chip pairs: before norm
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MA plots of chip pairs: quantile norm

I




sds

Why take log,

SD vs. Avg for pm
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Why log, norm(PM*)
= chip effect + probe effect

= Spike in data set A: 11 control cRNAs
spiked in (added in known amounts), all at
the same concentration, which varies
across 12 chips

= The example on the next slide is typical
of the set of 11
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Probe level data exhibiting parallel
behavior on the log scale

Concentration
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Why Robust Multi-chip Analysis

= Why multi-chip?
- To put each chip's values in the context of
a set of similar values

- helps even if not done robustly
= Why robust?

- robust summaries improve over standard
ones by down-weighting outliers
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Robust Multi-chip Analysis

= Base analysis on the linear model embodying the
parallel behavior:

log, norm(PM,; *) = chip effect; + probe effect; + ¢;
where i labels chips and j labels probes

= RMA implementation estimates parameters
using median polish (it's faster than IRLS)
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Differential expression: MAS 5.0

MAS 5.0 MVA plot MAS 5.0 QQ-plot
o — o -
W ,Oc:?
2
=
8]
=]
p= - o -
= E
P
(18]
w0
E g
Ll? —
LI"J —
| | | | | | | | | | | |
2 0 2 4 B 8 10 12 4 2 0 2 4
A reference quantiles

I



Differential expression: Li-Wong

Li and Wong's 8 MVA plot Li and Wong's 8 QQ-plot
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Differential expression: RMA

RMA MVA plot RMA QQ-plot
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Bias-variance tradeoff

= MAS 5.0 has less bias (for estimating fold
change) in comparison with RMA and dChip

= The problem is that it pays a very large price
in extra variability for this low bias

- MSE = bias? + variance
= but ... 0 + large > small + small

= Overdll, a little bias but greatly reduced
variance seems better

= (There is also much more evidence)
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Conclusions of Irizarry et al

» Studied a humber of ME on specially designed
experiments (spike-in, dilution series)

e Use normalized log,(PM*)

= Using global background improves on use of
probe-specific MM* (but...gcrma)

= Gene Logic spike-in and dilution study show
technology works well

= RMA was arguably the best summary in terms
of bias, variance and model fit
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/,f‘ Affycomp III: A Benchmark for ... % '\,\+

& o0 A (€ () rafalab.rc.fas.harvard.edu/affycomp Ed|l & Q Search 2w B8 9 3 O
Affycomp llI

A Benchmark for Affymetrix GeneChip Expression Measures

e The advent of Affycomp il

» Background
o Data and instructions
e Submission form

» New assessments (of SPIKE-IN HGU95 and HGU133 studies)
o Entry comparison / downloads

» Old assessments
o Affycomp Il (of SPIKE-IN HGU95 and HGU133)
o old entry comparison tool
o original assessments (of DILUTION and HGU95)

» Papers
o A Benchmark for Affymetrix GeneChip Expression Measures, Bioinformatics, Vol 20, No 3, 2004, 323-331
o Comparison of Affymetrix GeneChip Expression Measures, Bioinformatics, Vol 1, No 1, 2005, 1-7

e The affycomp R package

e FAQ (in prep)
e old FAQ
o Contact us
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Biological question
> (e.g. Differentially expressed genes,

Sample class prediction, efc.)

[ Experimental design ]

!

"[ Microarray/sequencing experiment }

. Image analysis/ Pl‘ re-processing
failed) | Quality assessment steps
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[ Normalization }

Data Analysis
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cDNA gene expression data

Data on & genes for n samples:
mRNA samples

sample1l sample2 sample3 sample4 sample5 ...
0.46 0.30 0.80 1.51 0.90
-0.10 0.49 0.24 0.06 0.46
0.15 0.74 0.04 0.10 0.20
-0.45 -1.03 -0.79 -0.56 -0.32

-0.06 1.06 1.35 1.09 | -1.09

Gene expression level of gene i in mMRNA sample j

2-color (e.g. cDNA) = M = normalized log,(Red/Green)
1-color (e.g. Affy) = RMA

Genes

(6) I SR GO RN \ O I
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Identifying Differentially Expressed
Genes (IDE)

= Goal: Identify genes associated with
covariate or response of interest

= Examples:

- Qualitative covariates or factors:
treatment, cell type, tumor class

- Quantitative covariate: dose, time
- Responses: survival, cholesterol level
- Any combination of thesel
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Informal methods

= If no replication (i.e. only have a single array
for each condition), not many options!

= Common methods include:

- (log) Fold change exceeding some threshold,
e.g. more than 2 (or less than -2)

- Graphical assessment, e.g. QQ plot
= Threshold for DE is pretty arbitrary
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QQ-Plots

Used to assess whether a
sample follows a

particular (e.g. normal)
distribution (or fo compare
two samples)

A method for looking

for outliers when data
are mostly normal
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Typical deviations from straight line
patterns

= QOutliers
= Curvature at both ends (long or short tails)
= Convex/concave curvature (asymmetry)

= Horizontal segments, plateaus, gaps
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Frequency

Outliers

Histogram of x Normal Q-Q Plot
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Frequency

Long Tails

Histogram of x Normal Q-Q Plot
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Frequency

Short Tails

Histogram of x1 Normal Q-Q Plot
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Frequency

Asymmetry

Histogram of x Normal Q-Q Plot
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Plateaus/Gaps

Histogram of x Normal Q-Q Plot
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QQ Plot

Normal Q-Q Plot
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DE ina QQ plot

Normal Q-Q Plot

In ThiS CC(S@, Up regulation > 2 &
the two _
conditions are

the same - i.e. g
NO genes are 2
truly DE! o -

Normal Quantiles
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Replicated experiments

= Have replicates for each condition
= Then can use statistical methods

= Summarize difference of averages for each
gene by

- M = average (Treatment) - average (Control)
- s = SE(M values)

= Rank genes in order of strength of evidence in
favor of DE

= How might we do this??
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Which genes are DE?

= Difficult to judge significance
- massive multiple testing problem
- gehes dependent
- don’ t know null distribution of M
= Strategy
- aim to rank genes

- assume most genes are not DE (depending
on type of experiment and array)

- find genes separated from the majority
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Ranking criteria
= Genesi=1,..,p
= M. = log, fold change for gene /
- Problem : genes with large variability likely to
be selected, even if not truly DE
= Take variability into account: use t. = M./ (s,/vVn)
- Problem : genes with extremely small
variances make very large t
- Genes with small fold-change might not be
biologically interesting
- When the number of replicates is small, the
smallest s;are /ikely to be underestimates
too few degrees of freedom)
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Shrinkage estimators

= Tdea: borrow information across genes

= Here, we ‘shrink’ the t;towards zero by
modifying the s;in some way (get s;%)
= mod t,= +* = M./(se*)

TI < > T,* < > Ml
= Many ways to get se*

= We will use the version implemented in the
BioConductor package 1imma
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Moderated f-statistics (Smyth)

= Using empirical Bayesian approach to estimate:
= Overall variability estimate s,?
" Per-gene varibility estimate s,°
= Shrinkage variability: 5.2 = dysy? + d,s,?
A do + d,
= Contrast estimator B, (difference in means
between two groups)
= Moderated t-statistics: ?9 = [ASQ
G
" (v, = Factor in covariance matrix of linear

lﬂwel estimate)




Linear modeling

= We will cover this in greater detail in a few
weeks when we look at experimental design

= For now, it will be ok to follow along the example
in the 1imma user manual

= (This will be part of the TP next Monday)
= Details about mod-t statistics in Smyth's paper:

http://www.statsci.org/smyth/pubs/ebayes.pdf
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An empirical Bayes (EB) story

= M, (fold change) ~ N(w;, 0°)

= Proportion p of genes have y; = O (i.e. are DE)
= Normal prior on nonzero w

= Tnverse-gamma prior on o;

= The priors on u,and o2 involve hyperparameters
(parameters for the priors of the parameters)

= Tn EB estimation, the hyperparameters are estimated
from the data

= (Lonnstedt and Speed): For each gene, compute
posterior log odds that gene is DE:

B = log[ P(w; = 0)/P(u; = 0)]
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Simulation study: genes with
different SDs

— Fold Change
—— Penalived T
— T Stat
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Simulation study: genes with
similar SDs
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Simulation study: genes with different
SDs, small number of arrays
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