Statistics for Genomic Data Analysis

Affymetrix signal quantification; Bayesian estimation and IDE

http://moodle.epfl.ch/course/view.php?id=15271

Affymetrix GeneChip Probe Arrays

Statistics for Genomic Data Analysis

Array design

probe set = collection of probe pairs; There are tens of thousands of probe sets per chip

Statistics for Genomic Data Analysis

Image analysis

- About 100 pixels per probe cell
- These intensities are combined to form one number representing expression for the probe cell oligo

Artifacts in microarrays

- We are interested in finding true *biologically* meaningful differences between sample types
- Due to other sources of systematic variation, there are also usually *artifactual differences*
- Sources of artifacts include:
 - batch effects
 - hybridization artifacts

Looking for artifacts

- Exploratory data analysis (EDA) is an important component of microarray data preprocessing
- EDA involves identifying data artifacts
- We will use several types of plots for data visualization, primarily
 - scatterplots
 - boxplots
 - spatial plots/pseudo-images

Scatterplots

Expression data from 2 arrays

Statistics for Genomic Data Analysis

Where are the points?

Expression data from 2 arrays

Take logs...

Statistics for Genomic Data Analysis

... and rotate

(PA)

Statistics for Genomic Data Analysis

smoothScatter

Statistics for Genomic Data Analysis

Quantiles

The pth quantile is the number that has the proportion p of the data values smaller than it

Lec 2

Five-number summary and boxplot

- The 25th (Q₁), 50th (median), and 75th (Q₃) percentiles divide the data into 4 equal parts; these special percentiles are called *quartiles*
- An overall summary of the distribution of variable values is given by the five values:

Min, Q_1 , Median, Q_3 , and Max

A boxplot provides a visual summary of this five-number summary

Sample boxplot

Measuring expression

- Summarize fluorescence intensities from ~11-20 PM,MM pairs (probe level data) into one number for each probe set ('gene')
- Call this number a measure of expression (ME)

A few expression measures

- MAS 5.0/GCOS older Affymetrix
- PLIER (Hubbell, newer Affymetrix)
- Model Based Expression Index (MBEI)
 - Li-Wong method, implemented in dChip (windows executable)
- Robust Multichip Analysis (RMA)
 - Irizarry *et al.*, Bolstad *et al.*;
 implemented in R package affy
 - gcrma (Wu et al.)
- VSN (Huber et al., Rocke)

RMA

- Use only PM, ignore MM (variant: gcrma)
- Background correct PM on raw intensity scale
- Quantile Normalization of bg-corrected PM*
- Assume additive model (on log₂ scale):
 log₂ normalized(PM_{ij}*) = a_i + b_j + e_{ij}
- Estimate chip effects (log gene expression) a_i and probe effects b_j using a robust method

- Median polish - quick

- robust linear model - yields quality diagnostics

Why ignore MM values?

- The MM values have information about both signal and noise
- Using it without adding more noise is challenging and is a topic of current research (gcrma)
- It should be possible to improve the BG correction using MM, without having the noise level increase greatly

Background model

- Model observed PM intensity S as the sum of a *signal* X and *background* Y, S=X+Y, where
 - X is exponential (α)
 - Y is Normal (μ , σ^2)
 - X, Y independent random variables
- BG adjusted values are then E(X|S=s)

Background model pictorially

Signal + Noise = Observed

Statistics for Genomic Data Analysis

PM data on log₂ scale

histogram of log(PM) with fitted model

Statistics for Genomic Data Analysis

Lec 2

Quantile normalization

- The purpose of *normalization* is to remove artifactual differences between arrays (*e.g.*,differences in total intensity)
- Quantile normalization makes the distribution of probe intensities the same for every chip
- The normalization distribution is chosen by averaging each quantile across chips
- After normalization, variability of expression measures across chips reduced
- (this results in a normalization that is probably overly conservative)

Quantile normalization: pictorially

Density of PM probe intensities for Spike-In chips

Lec 2

MA plots of chip pairs: before norm

Statistics for Genomic Data Analysis

MA plots of chip pairs: quantile norm

Statistics for Genomic Data Analysis

Why take \log_2

SD vs. Avg for pm SD vs. Avg for log2(pm) 0 5000 0.8 0.6 500 sds sds 0.4 100 20 0.2 10 0.0 500 1000 2000 5000 20000 50000 9 10 11 12 13 14 15 avg avg

Statistics for Genomic Data Analysis

Why log₂ norm(PM*) = chip effect + probe effect

- Spike in data set A: 11 control cRNAs spiked in (added in known amounts), all at the same concentration, which varies across 12 chips
- The example on the next slide is typical of the set of 11

Probe level data exhibiting parallel behavior on the log scale

Statistics for Genomic Data Analysis

Why Robust Multi-chip Analysis

- Why multi-chip?
 - To put each chip's values in the *context* of a set of similar values
 - helps even if not done robustly
- Why robust?
 - robust summaries improve over standard ones by *down-weighting outliers*

Robust Multi-chip Analysis

Base analysis on the linear model embodying the parallel behavior:

 $log_2 norm(PM_{ij} *) = chip effect_i + probe effect_j + \varepsilon_{ij}$ where *i* labels chips and *j* labels probes

 RMA implementation estimates parameters using median polish (it's faster than IRLS)

Differential expression: MAS 5.0

MAS 5.0 MVA plot

MAS 5.0 QQ-plot

Statistics for Genomic Data Analysis

Differential expression: Li-Wong

Li and Wong's 0 MVA plot

Statistics for Genomic Data Analysis

Lec 2

Li and Wong's 0 QQ-plot

Differential expression: RMA

RMA MVA plot

RMA QQ-plot

Statistics for Genomic Data Analysis

Bias-variance tradeoff

- MAS 5.0 has less *bias* (for estimating fold change) in comparison with RMA and dChip
- The problem is that it pays a very large price in *extra variability* for this low bias
 - MSE = bias² + variance
- but ... 0 + large > small + small
- Overall, a little bias but greatly reduced variance seems better
- (There is also much more evidence)

Conclusions of Irizarry et al.

- Studied a number of ME on specially designed experiments (spike-in, dilution series)
- Use normalized log₂(PM*)
- Using global background improves on use of probe-specific MM* (but...gcrma)
- Gene Logic spike-in and dilution study show technology works well
- RMA was arguably the best summary in terms of bias, variance and model fit

Affycomp III

A Benchmark for Affymetrix GeneChip Expression Measures

- The advent of Affycomp III
- Background
- Data and instructions
- Submission form
- New assessments (of SPIKE-IN HGU95 and HGU133 studies)
- Entry comparison / downloads
- Old assessments
 - Affycomp II (of SPIKE-IN HGU95 and HGU133)
 - old entry comparison tool
 - original assessments (of DILUTION and HGU95)
- Papers
 - A Benchmark for Affymetrix GeneChip Expression Measures, Bioinformatics, Vol 20, No 3, 2004, 323-331
 Comparison of Affymetrix GeneChip Expression Measures, Bioinformatics, Vol 1, No 1, 2005, 1-7
- The affycomp R package
- FAQ (in prep)
- old FAQ
- Contact us

Statistics for Genomic Data Analysis

Lec 2

cDNA gene expression data

Data on G genes for n samples: mRNA samples

		sample1	sample2	sample3	sample4	sample5	•••
Genes	1	0.46	0.30	0.80	1.51	0.90	
	2	-0.10	0.49	0.24	0.06	0.46	
	3	0.15	0.74	0.04	0.10	0.20	
	4	-0.45	-1.03	-0.79	-0.56	-0.32	
	5	-0.06	1.06	1.35	1.09	-1.09	

Gene expression level of gene i in mRNA sample j

2-color (e.g. cDNA) = M = normalized log₂(Red/Green) 1-color (e.g. Affy) = RMA

Identifying Differentially Expressed Genes (IDE)

- Goal: Identify genes associated with covariate or response of interest
- Examples:
 - Qualitative covariates or factors: treatment, cell type, tumor class
 - Quantitative covariate: dose, time
 - Responses: survival, cholesterol level
 - Any combination of these!

Informal methods

- If no replication (i.e. only have a single array for each condition), not many options!
- Common methods include:
 - (log) Fold change exceeding some threshold,
 e.g. more than 2 (or less than -2)
 - Graphical assessment, e.g. QQ plot
- Threshold for DE is pretty arbitrary

QQ-Plots

Statistics for Genomic Data Analysis

Typical deviations from straight line patterns

- Outliers
- Curvature at both ends (long or short tails)
- Convex/concave curvature (asymmetry)
- Horizontal segments, plateaus, gaps

Outliers

Statistics for Genomic Data Analysis

Long Tails

Histogram of x Normal Q-Q Plot 0 20 200 5 150 0 9 0 Sample Quantiles Frequency 0 100 ω 0 $^{\circ}$ ERECTOR OF COLOR $^{\circ}$ 20 ٥œ 000 မဂ္ 0 0 -10 \odot 0 -5 -10 10 15 20 -2 -1 2 0 5 0 1 Theoretical Quantiles х

Statistics for Genomic Data Analysis

Short Tails

(PA)

Statistics for Genomic Data Analysis

Asymmetry

Statistics for Genomic Data Analysis

Plateaus/Gaps

Theoretical Quantiles

Х

Statistics for Genomic Data Analysis

QQ Plot

Normal Q-Q Plot

Statistics for Genomic Data Analysis

Lec 2

DE in a QQ plot

Normal Q-Q Plot

In this case, the two conditions are *the same - i.e.* NO genes are truly DE!

Statistics for Genomic Data Analysis

Lec 2

Replicated experiments

- Have *replicates* for each condition
- Then can use statistical methods
- Summarize difference of averages for each gene by
 - M = average (Treatment) average (Control)
 - s = SE(M values)
- Rank genes in order of strength of evidence in favor of DE
- How might we do this??

Which genes are DE?

- Difficult to judge significance
 - massive *multiple testing* problem
 - genes dependent
 - don't know null distribution of M
- Strategy
 - aim to *rank* genes
 - assume most genes are not DE (depending on type of experiment and array)
 - find genes *separated* from the majority

Ranking criteria

- Genes *i* = 1, ..., *p*
- M_i = log₂ fold change for gene i
 - *Problem*: genes with *large variability* likely to be selected, even if not truly DE
- Take variability into account: use t_i = M_i/ (s_i/√n)
 Problem: genes with extremely small variances make very large t
 - Genes with small fold-change might not be biologically interesting
 - When the number of replicates is small, the smallest s_i are *likely to be underestimates* (too few degrees of freedom)

Shrinkage estimators

- Idea: borrow information across genes
- Here, we 'shrink' the t_i towards zero by modifying the s_i in some way (get s_i*)

• mod
$$t_i = t_i^* = M_i / (se^*)$$

$$t_i \longleftrightarrow M_i$$

- Many ways to get se*
- We will use the version implemented in the BioConductor package limma

Moderated *t*-statistics (Smyth)

- Using empirical Bayesian approach to estimate:
- Overall variability estimate s_0^2
- Per-gene varibility estimate S_q^2
- Shrinkage variability: $\tilde{s}_g^2 = d_0 s_0^2 + d_g s_g^2$
- Contrast estimator $\hat{\beta}_g$ (difference in means between two groups)

 $d_0 + d_a$

lec 2

 $\widetilde{S}_a \int V_a$

• Moderated *t*-statistics: $\tilde{t}_g = \hat{\beta}_g$

 (v_g = Factor in covariance matrix of linear model estimate)
 Statistics for Genomic Data Analysis

Linear modeling

- We will cover this in greater detail in a few weeks when we look at experimental design
- For now, it will be ok to follow along the example in the limma user manual
- (This will be part of the TP next Monday)
- Details about mod-t statistics in Smyth's paper:

<u>http://www.statsci.org/smyth/pubs/ebayes.pdf</u>

An empirical Bayes (EB) story

- M_{ij} (fold change) ~ N(μ_i , σ_i^2)
- Proportion *p* of genes have $\mu_i \neq 0$ (*i.e.* are DE)
- Normal prior on nonzero μ_i
- Inverse-gamma prior on σ_i^2
- The priors on μ_i and σ_i^2 involve hyperparameters (parameters for the priors of the parameters)
- In EB estimation, the hyperparameters are estimated from the data
- (Lönnstedt and Speed): For each gene, compute posterior log odds that gene is DE:

 $\mathsf{B} = \mathsf{log}[\mathsf{P}(\mu_i \neq \mathsf{O})/\mathsf{P}(\mu_i = \mathsf{O})]$

M, B, mod *t*, *t*

Simulation study: genes with different SDs

(Pf)

Statistics for Genomic Data Analysis

Simulation study: genes with similar SDs

(PAL

Lec 2

Simulation study: genes with different SDs, small number of arrays

Lec 2