
Artificial Neural Networks (Gerstner). Solutions for week 1

Reinforcement Learning: Basics

Exercise 1. Iterative update1

We consider an empirical evaluation of Q(s, a) by averaging the rewards for action a over the first k
trials:

Qk =
1

k

k∑
i=1

ri.

We now include an additional trial and average over all k + 1 trials.

a. Show that this procedure leads to an iterative update rule of the form

∆Qk = ηk(rk −Qk−1),

(assuming Q0 = 0).

b. What is the value of ηk?

c. Give an intuitive explanation of the update rule.
Hint: Think of the following: If the actual reward is larger than my estimate, then I should ...

Solution:

a. We define ∆Qk as the difference between Qk and Qk−1, and we simplify:

∆Qk = Qk −Qk−1 =
1

k

k∑
i=1

ri −
1

k − 1

k−1∑
i=1

ri

=
1

k

(
rk +

k−1∑
i=1

ri

)
− 1

k − 1

k−1∑
i=1

ri

=
1

k

(
rk +

k − 1

k − 1

k−1∑
i=1

ri −
k

k − 1

k−1∑
i=1

ri

)

=
1

k

(
rk −

1

k − 1

k−1∑
i=1

ri

)
= ηk (rk −Qk−1) .

b. ηk = 1/k.

c. If the actual reward is larger than my estimate, then I should increase my estimate, otherwise I
should decrease it.

Exercise 2. Greedy policy and the two-armed bandit

In the “2-armed bandit” problem, one has to choose one of 2 actions. Assume action a1 yields a
reward of r = 1 with probability p = 0.25 and 0 otherwise. If you take action a2, you will receive a
reward of r = 0.4 with probability p = 0.75 and 0 otherwise. The “2-armed bandit” game is played
several times and Q values are updated using the update rule ∆Q(s, a) = η[rt −Q(s, a)].

a. Assume that you initialize all Q values at zero. You first try both actions: in trial 1 you choose
a1 and get r = 1; in trial 2 you choose a2 and get r = 0.4. Update your Q values (η = 0.2).

1The result of Exercise 1 will be used in the second lecture of week 1.

b. In trials 3 to 5, you play greedy and always choose the action which looks best (i.e., has the
highest Q-value). Which action has the higher Q-value after trial 5? (Assume that the actual
reward is r = 0 in trials 3-5.)

c. Calculate the expected reward for both actions. Which one is the best?

d. Initialize both Q-values at 2 (optimistic). Assume that, as in the first part, in the first two trials
you get for both actions the reward. Update your Q values once with η = 0.2. Suppose now that
in the following rounds, in order to explore well, you choose actions a1 and a2 alternatingly and
update the Q-values with a very small learning rate (η = 0.001). How many rounds (one round
= two trials = one trial with each action) does it take on average, until the maximal Q-value
also reflects the best action?
Hint: For η � 1 we can approximate the actual returns rt with their expectations E[r].

Solution:

a. In the beginning, Q(a1, t = 0) = Q(a2, t = 0) = 0 (we dropped the state index s since there is
only a single state). After choosing action a1 and receiving a reward of r = 1, its Q-value is
updated to:

Q(a1, t = 1) = Q(a1, t = 0) + ∆Q(a1) = 0 + η(r −Q(a1, t = 0)) = 0 + 0.2 · 1 = 0.2.

After choosing action a2 and receiving a reward of r = 0.4, its Q-value is updated to:

Q(a2, t = 2) = Q(a2, t = 0) + ∆Q(a2) = 0 + η(r −Q(a2, t = 0)) = 0 + 0.2 · 0.4 = 0.08.

Continuing with a greedy method implies that in the next round, action a1 will be chosen.

b. In trial 3 you take action a1. If the return is 0,

Q(a1, t = 3) = Q(a1, t = 2) + η(r −Q(a1, t = 2)) = (1− η) ·Q(a1, t = 2) + ηr = 0.8 · 0.2 = 0.16 .

Thus, in trial 4 we take again action a1. If the return is again 0,

Q(a1, t = 4) = (1− η) ·Q(a1, t = 3) = 0.8 · 0.16 = 0.128 .

In trial 5 we take again action a1. If the return is again 0,

Q(a1, t = 5) = (1− η) ·Q(a1, t = 4) = 0.8 · 0.128 = 0.1024 .

Thus, with a greedy policy, also in trial 6 action a1 will be taken. If by chance some of the returns
were 1 instead of 0, Q(a1, t = 5) would be even higher, while Q(a2, t = 5) = Q(a2, t = 2) = 0.08
because action a2 was never taken.

c. For action a1, the expected reward per round is given by E[r1] = p · 1 + (1− p) · 0 = 0.25. For
action a2, the expected reward per round is evaluated to E[r2] = 0.75 · 0.4 + 0.25 · 0 = 0.3. The
second action yields a higher reward on average.

d. Similarly as in a, we can compute the Q-values after the first step with η = 0.2. We obtain:
Q∗(a1) = 1.8 and Q∗(a2) = 1.68. We use the hint that for η � 1 we can approximate the actual
returns rt with their expectations E[r], i.e.

Q(ai, t) = (1− η)Q(ai, t− 1) + ηrt (1)

≈ (1− η)Q(ai, t− 1) + ηE[r] (2)

= (1− η) [(1− η)Q(ai, t− 2) + ηE[r]] + ηE[r] (3)

We continue by induction and arrive at

= η
t−1∑
s=0

(1− η)sE[r] + (1− η)tQ(ai, 0) (4)

= η
1− (1− η)t

η
E[r] + (1− η)tQ(ai, 0) (5)

= (1− γt)E[r] + γtQ(ai, 0), (6)

with γ = 1− η and using the formula for the geometric series. We search for the smallest t such
that

Q(a2, t) > Q(a1, t) (7)

(1− γt)E[r2] + γtQ∗(a2) > (1− γt)E[r1] + γtQ∗(a1) (8)

⇒ γt (Q∗(a1)−Q∗(a2) + E[r2]− E[r1]) < E[r2]− E[r1] (9)

⇒ t log(γ) < log

(
E[r2]− E[r1]

Q∗(a1)−Q∗(a2) + E[r2]− E[r1]

)
(10)

⇒ t > 1223.16 (11)

Exercise 3. Batch vesrsus online learning rules: Recap2

We define the mean squared error in a dataset with P data points as

EMSE(w) =
1

2

1

P

∑
µ

(tµ − ŷµ)2 (12)

where the output is

ŷµ = g(aµ) = g(wTxµ) = g(
∑
k

wkx
µ
k) (13)

and the input is the xµ with components xµ1 . . . x
µ
d .

a. Calculate the update of weight wj by gradient descent (batch rule)

∆wj = −η dE
dwj

(14)

Hint: Apply chain rule

b. Rewrite the formula by taking one data point at a time (stochastic gradient descent). What is
the difference to the batch rule?

c. Rewrite your result in b in vector notation (hint: use the weight vector w and the input vector
xµ). Show that the update after application of data point µ can be written as

∆w = ηδ(µ)xµ

where δ(µ) is a scalar number that depends on µ. Express δ(µ) in terms of tµ, ŷµ, g′.

2The result of Exercise 3 will be used in the second lecture of week 1.

Solution:

a.

dE

dwj
=

d

dwj

1

2

1

P

∑
µ

(tµ − g(
∑
k

wkx
µ
k))2

=
1

2

1

P

∑
µ

2(tµ − ŷµ)
d

dwj

(
tµ − g(

∑
k

wkx
µ
k)

)

=
1

P

∑
µ

(tµ − g(aµ))(−xµj)g′(aµ)

hence

∆wj = η
1

P

∑
µ

(tµ − g(aµ))xµj g
′(aµ)

b.
∆wj(µ) = η (tµ − g(aµ))g′(aµ)xµj

Here, the weight update is performed on the error signal of a single data point. While in (a),
the error signal is averaged over all data points. From a geometric perspective, the batch rule
updates the separation hyperplane in the direction so that the hyperplane linearly separates all
points. On the other hand, the stochastic online rule, will update the hyperplane so that a
single randomly chosen point is pushed on the correct side of the hyperplane. Looking at the
hyperplane updates, the stochastic rule leads to more noisy updates (the hyperplane moves in
many different direction depending on the selected example) than the batch rule.

c. We know that w = [w1, . . . , wd] where d is the dimensionality of the input space. ∆w =
[∆w1, . . . ,∆wd] and therefore the update rule in b in the vector form can be written as

∆w = η
[
(tµ − g(aµ))g′(aµ)xµ1 , . . . , (t

µ − g(aµ))g′(aµ)xµd
]
.

Taking the common scalar terms outside and substituting g(aµ) with ŷµ, we have

∆w = η (tµ − ŷµ)g′(aµ)xµ

and thus δ(µ) = (tµ − ŷµ)g′(aµ).

Exercise 4. Geometric interpretation of an artificial neuron: Recap

Consider the single-neuron function in 2-D with

y = g(xTw) (15)

where g is a strictily increasing activation function, x = (x1, x2,−1) ∈ R2+1 is the extended 2-
dimensional input (i.e., the threshold/bias value has been integrated as an extra input x3 = −1), and
w = (w1, w2, w3) ∈ R3 is the weight vector. The hyperplane xTw = 0 describes the boundary between
where the neuron is on, i.e., xTw > 0, and where it is off, i.e., xTw < 0. Consider this hyperplane in
the 2-D space of (x1, x2) and answer the following questions:

a. The hyperplane is a line in 2-D. What is the slope of this line as a function of w1, w2, and w3?
Where does the line intersect with the y-axis and where with the x-axis?

b. Is it possible to have two weight vectors w and w′ such that w 6= w′ but xTw = 0 and xTw′ = 0
describe the same hyperplane? If yes, what conditions w and w′ must meet?

c. For the general case of x = (x1, ..., xN ,−1) ∈ RN+1, what is the distance of the hyperplane
xTw = 0 from the origin in RN? Where does the hyperplane intersect with the xn-axis for
n ∈ {1, ..., N}?

d. Use the online learning rule you derived in Exercise 3c and describe, in words, how the separating
hyperplane in RN changes after each update. Make sure you consider the effects of both changing
bias/threshold on one side and changing weight parameter w on the other side.

Solution:

a. The line is described by

x2 = −w1

w2
x1 +

w3

w2
.

hence, its slope is a = −w1
w2

. The line meets the y-axis at w3
w2

and the x-axis at w3
w1

.

b. Yes, as long as we have

w1

w2
=
w′1
w′2

and
w3

w2
=
w′3
w′2
.

c. The intersect with the xn-axis is given by

xn =
wN+1

wn
.

To find the distance, we define w̄ = (w1, ..., wN) ∈ RN and x̄ = (x1, ..., xN) ∈ RN and give two
different solutions:

Solution 1 (Projection): Consider an arbitrary point x̄ on the hyperplane, i.e., x̄T w̄ = wN+1.
Then, the distance of any point x̄′ ∈ RN from the hyperplane is equal to the lenght of the
projection of the difference x̄− x̄′ on the hyperplane normal vector:

d = |
(
x̄− x̄′

)T w̄

||w̄||
|.

For the distance to the origin, we need to put x̄′ = 0:

d = | x̄
T w̄

||w̄||
| = |wN+1|

||w̄||
.

Solution 2 (Optimization): The distance of the hyperplane from the origin is given by

d = min
x̄ s.t. x̄T w̄=wN+1

||x̄||.

The solution to this constraint optimization problem should satisfy

∂

∂x̄

(
||x̄||2 − λ(x̄T w̄ − wN+1)

)
= 0,

where λ is the Lagrange multiplier. This condition combined with the hyperplane constraint,
gives us

d = ||wN+1

||w̄||2
w̄|| = |wN+1|

||w̄||
.

d. The updated hyperplane is charachterized by

(i) w̄ ← w̄ + ηδ(µ)x̄µ

(ii) wN+1 ← wN+1 − ηδ(µ).

Step (i) rotates the hyperplane in a direction to either have it aligned with x̄µ (if the target
is underestimated, i.e., δ(µ) > 0) or get aligned with −x̄µ (if the target is overestimated, i.e.,
δ(µ) < 0). Given the rotated hyperplane, step (ii) moves the hyperplane either down to decrease
all the intersect points (if the target is underestimated, i.e., δ(µ) > 0) or up to decrease all the
intersect points (if the target is overestimated, i.e., δ(µ) < 0).

