Exercise 3.1

The hypothesis class \mathcal{H} being PAC learnable with sample complexity $m_{\mathcal{H}}(\cdot, \cdot)$ means that there is a learning algorithm A such that when running A on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. samples generated by \mathcal{D} , with probability at least $1-\delta$, A returns a hypothesis $h \in \mathcal{H}$ with $L_{\mathcal{D}}(h) \leq \epsilon$.

Given $0 < \epsilon_1 \leq \epsilon_2 < 1$, consider $m \geq m_{\mathcal{H}}(\epsilon_1, \delta)$. We have that, with probability at least $1 - \delta$, A returns a hypothesis $h \in \mathcal{H}$ satisfying $L_{\mathcal{D}}(h) \leq \epsilon_1 \leq \epsilon_2$. This implies that $m_{\mathcal{H}}(\epsilon_1, \delta)$ is a sufficient number of samples for accuracy ϵ_2 . Therefore, $m_{\mathcal{H}}(\epsilon_1, \delta) \geq m_{\mathcal{H}}(\epsilon_2, \delta)$.

The proof of $m_{\mathcal{H}}(\epsilon, \delta_1) \geq m_{\mathcal{H}}(\epsilon, \delta_2)$ for $0 < \delta_1 \leq \delta_2 < 1$ follows analogously from the definition.

Exercise 3.3

We can simplify our task by realizing that this is equivalent of thinking of a threshold on a line. Imagine that all points with label 0 are on the left of a threshold and all points with label 1 are on the right of this threshold. We are given m samples. Consider the interval between the maximum sample of label 0 and the minimum sample of label 1. Let κ be the probability mass under the true distribution of samples falling into this interval. The chance that we get no samples in this interval is $(1 - \kappa)^m$. Assume that we choose our threshold anywhere in this interval. The risk of the resulting classifier is then upper bounded by κ . We want that the risk is no more than ϵ with probability at least $1 - \delta$. If $\epsilon \geq \kappa$ we are done. If $\epsilon \leq \kappa$ then $(1-\kappa)^m \leq (1-\epsilon)^m \leq \delta$. We conclude that as long as $m \geq \log(1/\delta)/\log(1/(1-\epsilon))$. Since $\log(1/\delta)/\epsilon \geq \log(1/\delta)/\log(1/(1-\epsilon))$ a valid choice $m \geq \lceil \log(1/\delta)/\epsilon \rceil$.

Below is an alternative proof. The realizability assumption for $\mathcal{H} = \{h_r : r \in \mathbb{R}_+\}$ implies that there is a circle of radius r^* such that, almost surely, any x inside it has label y = 1and any x outside it as label y = 0. The learning task here is to distinguish this circle.

We now consider the ERM algorithm which, given a training sequence $S = \{(x_i, y_i)\}_{i=1}^m$, returns the hypothesis $h_S \in \mathcal{H}$ corresponding to the *tightest* circle which contains all of the positive (meaning $y_i = 1$) instances in S and none of the negative ones. We denote r_S the radius of this tightest circle. Under the realizability assumption, $r_S \leq r^*$ and $\forall S \in (\mathcal{X} \times \mathcal{Y})^m$:

$$L_{\mathcal{D}}(h_S) = \mathbb{P}_{(x,y)\sim\mathcal{D}}(r_S < ||x|| \le r^*)$$

Let $\epsilon_0 = \mathbb{P}_{(x,y)\sim\mathcal{D}}(0 < ||x|| \le r^*)$. Note that $r \in [0, r^*] \mapsto \mathbb{P}_{(x,y)\sim\mathcal{D}}(r < ||x|| \le r^*)$ is non increasing so $\forall r \in [0, r^*] : \mathbb{P}_{(x,y)\sim\mathcal{D}}(r < ||x|| \le r^*) \le \epsilon_0$. Therefore, for any $\epsilon \in (\epsilon_0, 1]$, $\{L_{\mathcal{D}}(h_S) \ge \epsilon\}$ is the empty set and $\mathbb{P}_{S\sim\mathcal{D}^m}(L_{\mathcal{D}}(h_S) \ge \epsilon) = 0 \le e^{-\epsilon m}$. We now look at the more interesting case of $\epsilon \in [0, \epsilon_0]$. Define $r_{\epsilon} = \sup \{r \in [0, r^*] : \mathbb{P}_{(x,y)\sim\mathcal{D}}(r < ||x|| \le r^*) \ge \epsilon\}$.

Assume for a moment that $r \mapsto \mathbb{P}_{(x,y)\sim\mathcal{D}}(r < ||x|| \leq r^*)$ is continuous on $[0, r^*]$. Then $\mathbb{P}_{(x,y)\sim\mathcal{D}}(r_{\epsilon} < ||x|| \leq r^*) = \epsilon$ and $L_{\mathcal{D}}(h_S) \geq \epsilon$ if, and only if, $r_S \leq r_{\epsilon}$. It directly follows that:

$$\mathbb{P}_{S \sim \mathcal{D}^m}(L_{\mathcal{D}}(h_S) \ge \epsilon) = \mathbb{P}_{S \sim \mathcal{D}^m}(r_S \le r_\epsilon)$$

= $\mathbb{P}_{S \sim \mathcal{D}^m}$ (no points in S belongs to $\{x \in \mathbb{R}^2 : r_\epsilon < \|x\| \le r^*\}$)
= $(1 - \epsilon)^m$
 $\le e^{-\epsilon m}$.

If $r \mapsto \mathbb{P}_{(x,y) \sim \mathcal{D}}(r < ||x|| \le r^*)$ is not continuous, we have to consider two cases:

1. If $\mathbb{P}_{(x,y)\sim\mathcal{D}}(r_{\epsilon} < ||x|| \le r^*) \ge \epsilon$ then $L_{\mathcal{D}}(h_S) \ge \epsilon$ if, and only if, $r_S \le r_{\epsilon}$. Similarly to the continuous case:

$$\mathbb{P}_{S \sim \mathcal{D}^m}(L_{\mathcal{D}}(h_S) \ge \epsilon) = \mathbb{P}_{S \sim \mathcal{D}^m}(r_S \le r_\epsilon)$$

= $\mathbb{P}_{S \sim \mathcal{D}^m}$ (no points in S belongs to $\{x \in \mathbb{R}^2 : r_\epsilon < \|x\| \le r^*\}$)
 $\le (1 - \epsilon)^m$
 $\le e^{-\epsilon m}$.

2. If $\mathbb{P}_{(x,y)\sim\mathcal{D}}(r_{\epsilon} < ||x|| \le r^*) < \epsilon$ then $L_{\mathcal{D}}(h_S) \ge \epsilon$ if, and only if, $r_S < r_{\epsilon}$. Therefore: $\mathbb{P}_{S\sim\mathcal{D}^m}(L_{\mathcal{D}}(h_S) \ge \epsilon) = \mathbb{P}_{S\sim\mathcal{D}^m}(r_S < r_{\epsilon})$ $= \mathbb{P}_{S\sim\mathcal{D}^m}(\text{no points in } S \text{ belongs to } \{x \in \mathbb{R}^2 : r_{\epsilon} \le ||x|| \le r^*\})$ $\le (1-\epsilon)^m$ $\le e^{-\epsilon m}$,

where the first inequality uses that $\mathbb{P}_{(x,y)\sim\mathcal{D}}(r_{\epsilon} \leq ||x|| \leq r^*) \geq \epsilon$.

The desired bound on the sample complexity follows from requiring $e^{-\epsilon m} \leq \delta$.

Exercise 3.7

Let g be any potentially probabilistic classifier from \mathcal{X} to $\{0,1\}$. Note that for the 0-1 loss:

$$L_{\mathcal{D}}(g) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\mathbb{1}_{g(x)\neq y}] = \mathbb{E}_{x\sim\mathcal{D}_x}\left[\mathbb{E}_{y\sim\mathcal{D}_{y|x}}[\mathbb{1}_{g(x)\neq y}]\right] = \mathbb{E}_{x\sim\mathcal{D}_x}\left[\mathbb{P}(g(x)\neq y|x)\right];$$
$$L_{\mathcal{D}}(f_{\mathcal{D}}) = \mathbb{E}_{x\sim\mathcal{D}_x}\left[\mathbb{P}(f_{\mathcal{D}}(x)\neq y|x)\right].$$

We will compare the two conditional probabilities inside the expectations over $x \sim \mathcal{D}_x$. Let $x \in \mathcal{X}$ and $a_x := \mathbb{P}(y = 1|x)$. Using the conditional independence of g(x) and y given x, we have:

$$\begin{aligned} \mathbb{P}(g(x) \neq y|x) &= \mathbb{P}(g(x) = 0|x) \cdot \mathbb{P}(y = 1|x) + \mathbb{P}(g(x) = 1|x) \cdot \mathbb{P}(y = 0|x) \\ &= \mathbb{P}(g(x) = 0|x) \cdot a_x + \mathbb{P}(g(x) = 1|x) \cdot (1 - a_x) \\ &\geq \mathbb{P}(g(x) = 0|x) \cdot \min\{a_x, 1 - a_x\} + \mathbb{P}(g(x) = 1|x) \cdot \min\{a_x, 1 - a_x\} \\ &= \min\{a_x, 1 - a_x\} .\end{aligned}$$

If $g = f_{\mathcal{D}}$ then $\mathbb{P}(g(x) = 0|x) = \mathbb{1}_{a_x < 1/2}$ and $\mathbb{P}(g(x) = 1|x) = \mathbb{1}_{a_x \ge 1/2}$, and the above inequality is tight:

$$\mathbb{P}(f_{\mathcal{D}}(x) \neq y | x) = \mathbb{1}_{a_x < 1/2} \cdot a_x + \mathbb{1}_{a_x \ge 1/2} \cdot (1 - a_x) = \min\{a_x, 1 - a_x\}.$$

Therefore, we have $L_{\mathcal{D}}(f_{\mathcal{D}}) \leq L_{\mathcal{D}}(g)$.

Exercise 3.8

- 1. Solved already in Exercise 3.7.
- 2. We have shown in Exercise 3.7 that the Bayes optimial predictor $f_{\mathcal{D}}$ is optimal w.r.t. \mathcal{D} ; in other words, $f_{\mathcal{D}}$ is always better than any other learning algorithm w.r.t. \mathcal{D} .
- 3. Take \mathcal{D} to be any probability distribution and $B = f_{\mathcal{D}}$.