
Solutions to Homework 1
CS-526 Learning Theory

Exercise 3.1

The hypothesis class H being PAC learnable with sample complexity mH(·, ·) means that
there is a learning algorithm A such that when running A on m ≥ mH(ε, δ) i.i.d. samples
generated by D, with probability at least 1−δ, A returns a hypothesis h ∈ H with LD(h) ≤ ε.

Given 0 < ε1 ≤ ε2 < 1, consider m ≥ mH(ε1, δ). We have that, with probability at least
1− δ, A returns a hypothesis h ∈ H satisfying LD(h) ≤ ε1 ≤ ε2. This implies that mH(ε1, δ)
is a sufficient number of samples for accuracy ε2. Therefore, mH(ε1, δ) ≥ mH(ε2, δ).

The proof of mH(ε, δ1) ≥ mH(ε, δ2) for 0 < δ1 ≤ δ2 < 1 follows analogously from the
definition.

Exercise 3.3

We can simplify our task by realizing that this is equivalent of thinking of a threshold on a
line. Imagine that all points with label 0 are on the left of a threshold and all points with
label 1 are on the right of this threshold. We are given m samples. Consider the interval
between the maximum sample of label 0 and the minimum sample of label 1. Let κ be the
probability mass under the true distribution of samples falling into this interval. The chance
that we get no samples in this interval is (1 − κ)m. Assume that we choose our threshold
anywhere in this interval. The risk of the resulting classifier is then upper bounded by κ. We
want that the risk is no more than ε with probability at least 1− δ. If ε ≥ κ we are done. If
ε ≤ κ then (1−κ)m ≤ (1−ε)m ≤ δ. We conclude that as long as m ≥ log(1/δ)/ log(1/(1−ε)).
Since log(1/δ)/ε ≥ log(1/δ)/ log(1/(1− ε)) a valid choice m ≥ dlog(1/δ)/εe.

Below is an alternative proof. The realizability assumption forH = {hr : r ∈ R+} implies
that there is a circle of radius r∗ such that, almost surely, any x inside it has label y = 1
and any x outside it as label y = 0. The learning task here is to distinguish this circle.

We now consider the ERM algorithm which, given a training sequence S = {(xi, yi)}mi=1,
returns the hypothesis hS ∈ H corresponding to the tightest circle which contains all of the
positive (meaning yi = 1) instances in S and none of the negative ones. We denote rS the
radius of this tightest circle. Under the realizability assumption, rS ≤ r∗ and ∀S ∈ (X×Y)m:

LD(hS) = P(x,y)∼D
(
rS < ‖x‖ ≤ r∗

)
.

Let ε0 = P(x,y)∼D(0 < ‖x‖ ≤ r∗). Note that r ∈ [0, r∗] 7→ P(x,y)∼D(r < ‖x‖ ≤ r∗) is non
increasing so ∀r ∈ [0, r∗] : P(x,y)∼D(r < ‖x‖ ≤ r∗) ≤ ε0. Therefore, for any ε ∈ (ε0, 1],
{LD(hS) ≥ ε} is the empty set and PS∼Dm(LD(hS) ≥ ε) = 0 ≤ e−εm. We now look at the
more interesting case of ε ∈ [0, ε0]. Define rε = sup

{
r ∈ [0, r∗] : P(x,y)∼D(r < ‖x‖ ≤ r∗) ≥ ε

}
.
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Assume for a moment that r 7→ P(x,y)∼D(r < ‖x‖ ≤ r∗) is continuous on [0, r∗]. Then
P(x,y)∼D(rε < ‖x‖ ≤ r∗) = ε and LD(hS) ≥ ε if, and only if, rS ≤ rε. It directly follows that:

PS∼Dm(LD(hS) ≥ ε) = PS∼Dm(rS ≤ rε)

= PS∼Dm

(
no points in S belongs to {x ∈ R2 : rε < ‖x‖ ≤ r∗}

)
= (1− ε)m

≤ e−εm .

If r 7→ P(x,y)∼D(r < ‖x‖ ≤ r∗) is not continuous, we have to consider two cases:

1. If P(x,y)∼D(rε < ‖x‖ ≤ r∗) ≥ ε then LD(hS) ≥ ε if, and only if, rS ≤ rε. Similarly to
the continuous case:

PS∼Dm(LD(hS) ≥ ε) = PS∼Dm(rS ≤ rε)

= PS∼Dm

(
no points in S belongs to {x ∈ R2 : rε < ‖x‖ ≤ r∗}

)
≤ (1− ε)m

≤ e−εm .

2. If P(x,y)∼D(rε < ‖x‖ ≤ r∗) < ε then LD(hS) ≥ ε if, and only if, rS < rε. Therefore:

PS∼Dm(LD(hS) ≥ ε) = PS∼Dm(rS < rε)

= PS∼Dm

(
no points in S belongs to {x ∈ R2 : rε ≤ ‖x‖ ≤ r∗}

)
≤ (1− ε)m

≤ e−εm ,

where the first inequality uses that P(x,y)∼D(rε ≤ ‖x‖ ≤ r∗) ≥ ε.

The desired bound on the sample complexity follows from requiring e−εm ≤ δ.

Exercise 3.7

Let g be any potentially probabilistic classifier from X to {0, 1}. Note that for the 0-1 loss:

LD(g) = E(x,y)∼D[1g(x) 6=y] = Ex∼Dx

[
Ey∼Dy|x [1g(x)6=y]

]
= Ex∼Dx

[
P(g(x) 6= y|x)

]
;

LD(fD) = Ex∼Dx

[
P(fD(x) 6= y|x)

]
.

We will compare the two conditional probabilities inside the expectations over x ∼ Dx. Let
x ∈ X and ax := P(y = 1|x). Using the conditional independence of g(x) and y given x, we
have:

P(g(x) 6= y|x) = P(g(x) = 0|x) · P(y = 1|x) + P(g(x) = 1|x) · P(y = 0|x)

= P(g(x) = 0|x) · ax + P(g(x) = 1|x) · (1− ax)
≥ P(g(x) = 0|x) ·min{ax, 1− ax}+ P(g(x) = 1|x) ·min{ax, 1− ax}
= min{ax, 1− ax} .

If g = fD then P(g(x) = 0|x) = 1ax<1/2 and P(g(x) = 1|x) = 1ax≥1/2, and the above
inequality is tight:

P(fD(x) 6= y|x) = 1ax<1/2 · ax + 1ax≥1/2 · (1− ax) = min{ax, 1− ax} .

Therefore, we have LD(fD) ≤ LD(g).
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Exercise 3.8

1. Solved already in Exercise 3.7.

2. We have shown in Exercise 3.7 that the Bayes optimial predictor fD is optimal w.r.t.
D; in other words, fD is always better than any other learning algorithm w.r.t. D.

3. Take D to be any probability distribution and B = fD.
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