
Chapter 4

Graphics

Both S-PLUS and R provide comprehensive graphics facilities for static two-
dimensional plots, from simple facilities for producing common diagnostic plots
by plot(object) to fine control over publication-quality graphs. In consequence,
the number of graphics parameters is huge. In this chapter, we build up the com-
plexity gradually. Most readers will not need the material in Section 4.4, and
indeed the material there is not used elsewhere in this book. However, we have
needed to make use of it, especially in matching existing graphical styles.

Some graphical ideas are best explored in their statistical context, so that,
for example, histograms are covered in Chapter 5, survival curves in Chapter 13,
biplots in Chapter 11 and time-series graphics in Chapter 14. Table 4.1 gives an
overview of the high-level graphics commands with page references.

There are many books on graphical design. Cleveland (1993) discusses most
of the methods of this chapter and the detailed design choices (such as the aspect
ratios of plots and the presence of grids) that can affect the perception of graphical
displays. As these are to some extent a matter of personal preference and this
is also a guide to S, we have kept to the default choices. Spence (2001) and
Wilkinson (1999) and the classics of Tufte (1983, 1990, 1997) discuss the visual
exploration of data.

Trellis graphics (Becker et al., 1996) are a later addition to S with a somewhat
different style and philosophy to the basic plotting functions. We describe the
basic functions first, then the Trellis functions in Section 4.5. R has a variant on
Trellis in its lattice package. The Windows version of S-PLUS has a very
different (and less powerful) style of object-oriented editable graphics which we
do not cover. One feature we do find useful is the ability to interactively change
the viewpoint in perspective plots (see page 422). The rgl package1 for R under
Windows provides similar facilities.

There are quite a few small differences in the R graphics model, and the de-
scription here tries to be completely accurate only for S-PLUS 6.

1Available at http://www.stats.uwo.ca/faculty/murdoch/software/.

69

70 Graphics

Table 4.1: High-level plotting functions. Page references are given to the most complete
description in the text. Those marked by † have alternatives in Trellis.

Function Page Description

abline 74 Add lines to the current plot in slope-intercept form.
axis 80 Add an axis to the plot.
barplot † 72 Bar graphs.
biplot 312 Represent rows and columns of a data matrix.
brush spin 75 Dynamic graphics. not R.
contour † 76 Contour plot. The Trellis equivalent is contourplot .
dotchart † Produce a dot chart.
eqscplot 75 Plot with geometrically equal scales (our library).
faces Chernoff’s faces plot of multivariate data.
frame 78 Advance to next figure region.
hist 112 Histograms. We prefer our function truehist .
hist2d 130 Two-dimensional histogram calculations.
identify locator 80 Interact with an existing plot.
image †

image.legend
76 High-density image plot functions. The Trellis version

is levelplot .
interaction.plot Interaction plot for a two-factor experiment.
legend 81 Add a legend to the current plot.
matplot 88 Multiple plots specified by the columns of a matrix.
mtext 81 Add text in the margins.
pairs † 75 All pairwise plots between multiple variables. The Trel-

lis version is splom .
par 83 Set or ask about graphics parameters.
persp † perspp
persp.setup

76 Three-dimensional perspective plot functions. Similar
Trellis functions are called wireframe and cloud.

pie † Produce a pie chart.
plot Generic plotting function.
polygon Add polygon(s) to the present plot, possibly filled.
points lines 73 Add points or lines to the current plot.
qqplot qqnorm 108 Quantile-quantile and normal Q-Q plots.
rect (R only) Add rectangles, possibly filled.
scatter.smooth 230 Scatterplot with a smooth curve.
segments arrows 88 Draw line segments or arrows on the current plot.
stars Star plots of multivariate data.
symbols Draw variable-sized symbols on a plot.
text 73 Add text symbols to the current plot.
title 79 Add title(s).

4.1 Graphics Devices 71

Table 4.2: Some of the graphical devices available.

S-PLUS :
motif UNIX: X11–windows systems.
graphsheet Windows, screen, printer, bitmaps.
win.printer Windows, a wrapper for a graphsheet .
postscript PostScript printers.
hplj UNIX: Hewlett-Packard LaserJet printers.
hpgl Hewlett-Packard HP-GL plotters.
pdf.graph Adobe’s PDF format.
wmf.graph Windows metafiles.
java.graph Java device.

R :
X11 UNIX: X11–windows systems.
windows Windows, screen, printer, metafiles.
macintosh classic MacOS screen device.
postscript PostScript printers.
pdf PDF files.
xfig files for XFig .
png PNG bitmap graphics.
jpeg JPEG bitmap graphics.
bitmap several bitmap formats via GhostScript.

4.1 Graphics Devices

Before any plotting commands can be used, a graphics device must be opened
to receive graphical output. Most commonly this is a window on the screen of a
workstation or a printer. A list of supported devices on the current hardware with
some indication of their capabilities is available from the on-line help system by
?Devices . (Note the capital letter.)

A graphics device is opened by giving the command in Table 4.2, possibly
with parameters giving the size and position of the window; for example, using
S-PLUS on UNIX,

motif("-geometry 600x400-0+0")

opens a small graphics window initially positioned in the top right-hand corner of
the screen. All current S environments will automatically open a graphics device
if one is needed, but we often choose to open the device ourselves and so take
advantage of the ability to customize it.

To make a device request permission before each new plot to clear the
screen use either par(ask = T) (which affects just the current device) or
dev.ask(ask = T) (not R: applies to every device). R

All open graphics devices may be closed using graphics.off() ; quitting
the S session does this automatically.

72 Graphics

1974 1975 1976 1977 1978 1979

0
50

00
15

00
0

25
00

0
UK deaths from lung disease

Males
Females

1974 1975 1976 1977 1978 1979

0
50

00
15

00
0

25
00

0 26140 26101 25718
23229 23951 22938

Figure 4.1: Two different styles of bar chart showing the annual UK deaths from certain
lung diseases. In each case the lower block is for males, the upper block for females.

It is possible to have several graphical devices open at once. By default the
most recently opened one is used, but dev.set can be used to change the current
device (by number). The function dev.list lists currently active devices, and
dev.off closes the current device, or one specified by number. There are also
commands dev.cur, dev.next and dev.prev which return the number of the
current, next or previous device on the list. The dev.copy function copies the
current plot to the specified device (by default the next device on the list).

Note that for some devices little or no output will appear on a file until
dev.off or graphics.off is called.

Many of the graphics devices on windowing systems have menus of choices,
for example, to make hardcopies and to alter the colour scheme in use. The
S-PLUS motif device has a Copy option on its Graph menu that allows a
(smaller) copy of the current plot to be copied to a new window, perhaps for com-
parison with later plots. (The copy window can be dismissed by the Delete item
on its Graph menu.)

There are some special considerations for users of graphsheet devices on
S-PLUS forWindows: see page 451.

4.2 Basic Plotting Functions

The function plot is a generic function that, when applied to many types of S
objects, will give one or more plots. Many of the plots appropriate to univariate
data such as boxplots and histograms are considered in Chapter 5.

Bar charts

The function to display barcharts is barplot. This has many options (described
in the on-line help), but some simple uses are shown in Figure 4.1. (Many of the
details are covered in Section 4.3.)

R: data(mdeaths); data(fdeaths); library(ts)
lung.deaths <- aggregate(ts.union(mdeaths, fdeaths), 1)

4.2 Basic Plotting Functions 73

barplot(t(lung.deaths), names = dimnames(lung.deaths)[[1]],
main = "UK deaths from lung disease")

legend(locator(1), c("Males", "Females"), fill = c(2, 3))
loc <- barplot(t(lung.deaths), names = dimnames(lung.deaths)[[1]],

angle = c(45, 135), density = 10, col = 1)
total <- rowSums(lung.deaths)
text(loc, total + par("cxy")[2], total, cex = 0.7) #R: xpd = T

Line and scatterplots

The default plot function takes arguments x and y, vectors of the same length, or
a matrix with two columns, or a list (or data frame) with components x and y and
produces a simple scatterplot. The axes, scales, titles and plotting symbols are all
chosen automatically, but can be overridden with additional graphical parameters
that can be included as named arguments in the call. The most commonly used
ones are:

type = "c" Type of plot desired. Values for c are:
p for points only (the default),
l for lines only,
b for both points and lines (the lines miss the points),
s, S for step functions (s specifies the level of the step at the left
end, S at the right end),
o for overlaid points and lines,
h for high-density vertical line plotting, and
n for no plotting (but axes are still found and set).

axes = L If F all axes are suppressed (default T, axes are automatically con-
structed).

xlab = "string"
ylab = "string"

Give labels for the x- and/or y-axes (default: the names, including
suffices, of the x- and y-coordinate vectors).

sub = "string"
main = "string"

sub specifies a title to appear under the x-axis label and main a title
for the top of the plot in larger letters (default: both empty).

xlim = c(lo ,hi)
ylim = c(lo, hi)

Approximate minimum and maximum values for x- and/or y-axis
settings. These values are normally automatically rounded to make
them ‘pretty’ for axis labelling.

The functions points, lines, text and abline can be used to add to a
plot, possibly one created with type = "n". Brief summaries are:

points(x,y,...) Add points to an existing plot (possibly using a different
plotting character). The plotting character is set by pch=
and the size of the character by cex= or mkh=.

lines(x,y,...) Add lines to an existing plot. The line type is set by lty=
and width by lwd=. The type options may be used.

text(x,y,labels,...) Add text to a plot at points given by x,y. labels is an
integer or character vector; labels[i] is plotted at point
(x[i],y[i]). The default is seq(along=x).

74 Graphics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25

Figure 4.2: Plotting symbols or marks, specified by pch = n. Those on the left of the
second row are only available on graphsheet devices, and those on the right of the
second row only in R (where the fill colour for 21 to 25 has been taken as light grey).

abline(a, b, ...)
abline(h = c, ...)
abline(v = c, ...)
abline(lmobject,...)

Draw a line in intercept and slope form, (a,b), across an
existing plot. h = c may be used to specify y-coordinates
for the heights of horizontal lines to go across a plot, and v
= c similarly for the x-coordinates for vertical lines. The
coefficients of a suitable lmobject are used.

These are the most commonly used graphics functions; we have shown exam-
ples of their use in Chapter 1, and showmanymore later. (There are also functions
arrows and symbols that we do not use in this book.) The plotting characters
available for plot and points can be characters of the form pch = "o" or
numbered from 0 to 27, which uses the marks shown in Figure 4.2.

Size of text and symbols
Confusingly, the size of plotting characters is selected in one of two very different
ways. For plotting characters (by pch = "o") or text (by text), the parameter
cex (for ‘character expansion’) is used. This defaults to the global setting (which
defaults to 1), and rescales the character by that factor. In S-PLUS for a mark setS+
by pch = n, the size is controlled by the mkh parameter which gives the height
of the symbol in inches. (This will be clear for printers; for screen devices the
default device region is about 8 in × 6 in and this is not changed by resizing the
window.) However, if mkh = 0 (the default, and always in R) the size is then
controlled by cex and the default size of each symbol is approximately that of O.
Care is needed in changing cex on a call to plot, as this may2 also change the
size of the axis labels. It is better to use, for example,

plot(x, y, type = "n") # axes only
points(x, y, pch = 4, mkh = 0, cex = 0.7) # add the points

If cex is used to change the size of all the text on a plot, it will normally be
desirable to set mex to the same value to change the interline spacing. An alter-
native to specifying cex is csi, which specifies the absolute size of a character
(in inches). (There is no msi.)

The default text size can be changed for some graphics devices, for example,
by argument pointsize for the postscript , win.printer , windows and
macintosh devices.

2In R these are controlled by cex.axis ; there are also cex.main , cex.sub and cex.lab , the
last for the axis titles.

4.2 Basic Plotting Functions 75

Equally scaled plots
There are many plots, for example, in multivariate analysis, that represent dis-
tances in the plane and for which it is essential to have a scaling of the axes that
is geometrically accurate. This can be done in many ways, but most easily by our
function eqscplot which behaves as the default plot function but shrinks the
scale on one axis until geometrical accuracy is attained.

Warning: when screen devices (except a graphsheet) are resized the
S-PLUS process is not informed, so eqscplot can only work for the original
window shape.

R has an argument asp that can be given to many high-level plotting func- R
tions and fixes scales so that x units are asp times as large as y units, even
across window resizing.

Multivariate plots

The plots we have seen so far deal with one or two variables. To view more
we have several possibilities. A scatterplot matrix or pairs plot shows a matrix
of scatterplots for each pair of variables, as we saw in Figure 1.2, which was
produced by splom(~ hills). Enhanced versions of such plots are a forte of
Trellis graphics, so we do not discuss how to make them in the base graphics
system.

Dynamic graphics

S-PLUS has limited facilities for dynamic plots; R has none. Both can work with
XGobi andGGobi (see page 302) to add dynamic brushing, selecting and rotating.

The S-PLUS function brush allows interaction with the (lower half) of a
scatterplot matrix. An example is shown in Figure 1.3 on page 9. As it is much
easier to understand these by using them, we suggest you try

brush(hills)

and experiment.
Points can be highlighted (marked with a symbol) by moving the brush (a

rectangular window) over them with button 1 held down. When a point is high-
lighted, it is shown highlighted in all the displays. Highlighting is removed by
brushing with button 2 held down. It is also possible to add or remove points by
clicking with button 1 in the scrolling list of row names.

One of four possible (device-dependent) marking symbols can be selected by
clicking button 1 on the appropriate one in the display box on the right. The
marking is by default persistent, but this can be changed to ‘transient’ in which
only points under the brush are labelled (and button 1 is held down). It is also
possible to select marking by row label as well as symbol.

The brush size can be altered under UNIX by picking up a corner of the brush
in the brush size box with the mouse button 1 and dragging to the required
size. Under Windows, move the brush to the background of the main brush
window, hold down the left mouse button and drag the brush to the required size.

76 Graphics

0 1 2 3 4 5 6

0
1

2
3

4
5

6

700 725 750 775 800

800

825

850

850

875

875

875 875900 900925

925

950

• • • • •

• •
•

• •

•
•

• •

•
• • • •

• •

•

• •
•

• •
•

•
•

• •

• • •

• •

• •

• •

• •

•

•

•
•

•

•
•

•

•

(a) by contour

700 725 750 775 800

800

825

850

850

875

875

875 875900 900925

925

9500

1

2

3

4

5

6

0 1 2 3 4 5 6

(b) by contourplot

Figure 4.3: Contour plots of loess smoothing of the topo dataset. Note the differences
in the axes and the way points are depicted.

The plot produced by brush will also show a three-dimensional plot (unless
spin = F), and this can be produced on its own by spin. Under UNIX clicking
with mouse button 1 will select three of the variables for the x-, y- and z-axes.
The plot can be spun in several directions and resized by clicking in the appropri-
ate box. The speed box contains a vertical line or slider indicating the current
setting.

Plots from brush and spin can only be terminated by clicking with the
mouse button 1 on the quit box or button.

Obviously brush and spin are available only on suitable screen devices, in-
cluding motif and graphsheet. Hardcopy is possible only by directly printing
the window used, not by copying the plot to a printer graphics device.

Plots of surfaces
The functions contour, persp and image allow the display of a function de-
fined on a two-dimensional regular grid. Their Trellis equivalents give more el-
egant output, so we do not discuss them in detail. The function contour al-
lows more control than contourplot.3 We anticipate an example from Chap-
ter 15 of plotting a smooth topographic surface for Figure 4.3, and contrast it with
contourplot.

R: library(modreg)
topo.loess <- loess(z ~ x * y, topo, degree = 2, span = 0.25)
topo.mar <- list(x = seq(0, 6.5, 0.2), y = seq(0, 6.5, 0.2))
topo.lo <- predict(topo.loess, expand.grid(topo.mar))
par(pty = "s") # square plot
contour(topo.mar$x, topo.mar$y, topo.lo, xlab = "", ylab = "",

levels = seq(700,1000,25), cex = 0.7)

3At the time of writing contourplot was not available in the R package lattice .

4.3 Enhancing Plots 77

A

MF

••
••
••

• •
•••
•••••

• • •• • •

•

Figure 4.4: A ternary plot of the compositions of 23 rocks from Aitchison (1986).

points(topo$x, topo$y)
par(pty = "m")

contourplot(z ~ x * y, mat2tr(topo.lo), aspect = 1,
at = seq(700, 1000, 25), xlab = "", ylab = "",
panel = function(x, y, subscripts, ...) {

panel.contourplot(x, y, subscripts, ...)
panel.xyplot(topo$x,topo$y, cex = 0.5)

}
)

This generates values of the surface on a regular 33 × 33 grid generated by
expand.grid. Our MASS library provides the functions con2tr and mat2tr
to convert objects designed for input to contour and matrices as produced by
predict.loess into data frames suitable for the Trellis 3D plotting routines.

The S-PLUS forWindowsGUI and R underWindows have ways to visualize
such surfaces interactively; see pages 69 and 422.

Making new types of plots
The basic components described so far can be used to create new types of plot as
the need arises.

Ternary plots are used for compositional data (Aitchison, 1986) where there
are three components whose proportions add to one. These are represented by a
point in an equilateral triangle, where the distances to the sides add to a constant.
These are implemented in a function ternary which is given on the help page
of the MASS dataset Skye; see Figure 4.4.

4.3 Enhancing Plots

In this section we cover a number of ways that are commonly used to enhance
plots, without reaching the level of detail of Section 4.4.

78 Graphics

Some plots (such as Figure 1.1) are square, whereas others are rectangular.
The shape is selected by the graphics parameter pty. Setting par(pty = "s")
selects a square plotting region, whereas par(pty = "m") selects a maximally
sized (and therefore usually non-square) region.

Multiple figures on one plot

We have already seen several examples of plotting two or more figures on a single
device surface, apart from scatterplot matrices. The graphics parameters mfrow
and mfcol subdivide the plotting region into an array of figure regions. They
differ in the order in which the regions are filled. Thus

par(mfrow = c(2, 3))
par(mfcol = c(2, 3))

both select a 2 × 3 array of figures, but with the first they are filled along rows,
and with the second down columns. A new figure region is selected for each new
plot, and figure regions can be skipped by using frame.

All but two4 of the multi-figure plots in this book were produced with mfrow.
Most of the side-by-side plots were producedwith par(mfrow = c(2, 2)), but
using only the first two figure regions.

The split.screen function provides an alternative and more flexible way
of generating multiple displays on a graphics device. An initial call such as

split.screen(figs = c(3, 2))

subdivides the current device surface into a 3 × 2 array of screens. The screens
created in this example are numbered 1 to 6, by rows, and the original device
surface is known as screen 0. The current screen is then screen 1 in the upper left
corner, and plotting output will fill the screen as it would a figure. Unlike multi-
figure displays, the next plot will use the same screen unless another is specified
using the screen function. For example, the command

screen(3)

causes screen 3 to become the next current screen.
On screen devices the function prompt.screen may be used to define a

screen layout interactively. The command

split.screen(prompt.screen())

allows the user to define a screen layout by clicking mouse button 1 on diagonally
opposite corners. In our experience this requires a steady hand, although there is a
delta argument to prompt.screen that can be used to help in aligning screen
edges. Alternatively, if the figs argument to split.screen is specified as an
N × 4 matrix, this divides the plot into N screens (possibly overlapping) whose
corners are specified by giving (xl, xu, yl, yl) as the row of the matrix (where
the whole region is (0, 1, 0, 1)).

4Figures 6.2 and 6.3, where the fig parameter was used.

4.3 Enhancing Plots 79

The split.screen function may be used to subdivide the current screen
recursively, thus leading to irregular arrangements. In this case the screen num-
bering sequence continues from where it had reached.

Split-screen mode is terminated by a call to close.screen(all = T); in-
dividual screens can be shut by close.screen(n).

The function subplot 5 provides a third way to subdivide the device surface.
This has callsubplot(fun, ...) which adds the graphics output of fun to an
existing plot. The size and position can be determined in many ways (see the
on-line help); if all but the first argument is missing a call to locator is used to
ask the user to click on any two opposite corners of the plot region.6

Use of the fig parameter to par provides an even more flexible way to
subdivide a plot; see Section 4.4 and Figure 6.2 on page 153.

With multiple figures it is normally necessary to reduce the size of the text. If
either the number of rows or columns set by mfrow or mfcol is three or more,
the text size is halved by setting cex = 0.5 (and mex = 0.5 ; see Section 4.4).
This may produce characters that are too small and some resetting may be appro-
priate. (On the other hand, for a 2 × 2 layout the characters will usually be too
large.) For all other methods of subdividing the plot surface the user will have to
make an appropriate adjustment to cex and mex or to the default text size (for
example by changing pointsize on the postscript and other devices).

Adding information

The basic plots produced by plot often need additional information added to
give context, particularly if they are not going to be used with a caption. We have
already seen the use of xlab, ylab, main and sub with scatterplots. These
arguments can all be used with the function title to add titles to existing plots.
The first argument is main, so

title("A Useful Plot?")

adds a main title to the current plot.
Further points and lines are added by the points and lines functions. We

have seen how plot symbols can be selected with pch=. The line type is selected
by lty=. This is device-specific, but usually includes solid lines (1) and a vari-
ety of dotted, dashed and dash-dot lines. Line width is selected by lwd=, with
standard width being 1, and the effect being device-dependent.

Using colour
The colour model of S-PLUS graphics is quite complex. Colours are referred to
as numbers, and set by the parameter col. Sometimes only one colour is allowed
(e.g., points) and sometimes col can be a vector giving a colour for each plot
item (e.g., text). There will always be at least two colours, 0 (the background,
useful for erasing by over-plotting) and 1. However, how many colours there are
and what they appear as is set by the device. Furthermore, there are separate

5Not in R, which has another approach called layout .
6Not the figure region; Figure 4.5 on page 81 shows the distinction.

80 Graphics

colour groups, and what they are is device-specific. For example, motif devices
have separate colour spaces for lines (including symbols), text, polygons (includ-
ing histograms, bar charts and pie charts) and images, and graphsheet devices
have two spaces, one for lines and text, the other for polygons and images. Thus
the colours can appear completely differently when a graph is copied from device
to device, in particular on screen and on a hardcopy. It is usually a good idea to
design a colour scheme for each device.

It is necessary to read the device help page thoroughly (and for postscript ,
also that for ps.options.send).

R has a different and more coherent colour model involving named colours,
user-settable palettes and even transparency. See the help topics palette and
colors for more details.

Identifying points interactively
The function identify has a similar calling sequence to text. The first two ar-
guments give the x- and y-coordinates of points on a plot and the third argument
gives a vector of labels for each point. (The first two arguments may be replaced
by a single list argument with two of its components named x and y, or by a
two-column matrix.) The labels may be a character string vector or a numeric
vector (which is coerced to character). Then clicking with mouse button 1 near
a point on the plot causes its label to be plotted; labelling all points or clicking
anywhere in the plot with button 2 terminates the process.7 (The precise position
of the click determines the label position, in particular to left or right of the point.)
We saw an example in Figure 1.4 on page 10. The function returns a vector of
index numbers of the points that were labelled.

In Chapter 1 we used the locator function to add new points to a plot.
This function is most often used in the form locator(1) to return the (x, y)
coordinates of a single button click to place a label or legend, but can also be used
to return the coordinates of a series of points, terminated by clicking with mouse
button 2.

Adding further axes and grids
It is sometimes useful to add further axis scales to a plot, as in Figure 8.1 on
page 212 which has scales for both kilograms and pounds. This is done by the
function axis. There we used

attach(wtloss)
oldpar <- par() # R: oldpar <- par(no.readonly = TRUE)
alter margin 4; others are default
par(mar = c(5.1, 4.1, 4.1, 4.1))
plot(Days, Weight, type = "p", ylab = "Weight (kg)")
Wt.lbs <- pretty(range(Weight*2.205))
axis(side = 4, at = Wt.lbs/2.205, lab = Wt.lbs, srt = 90)
mtext("Weight (lb)", side = 4, line = 3)
detach()

7With R on a Macintosh (which only has one mouse button) click outside the plot window to
terminate locator or identify .

4.3 Enhancing Plots 81

Margin 1

M
ar

gi
n

2

Margin 3

M
ar

gi
n

4

Figure Region

Plot Region

Figure 4.5: Anatomy of a graphics figure.

par(oldpar)

This adds an axis on side 4 (labelled clockwise from the bottom; see Figure 4.5)
with labels rotated by 90◦ (srt = 90 , not needed inRwhere unlikeS-PLUS the R
rotation is controlled by the setting of las) and then uses mtext to add a label
‘underneath’ that axis. Other parameters are explained in Section 4.4. Please read
the on-line documentation very carefully to determine which graphics parameters
are used in which circumstances.

Grids can be added by using axis with long tick marks, setting parameter
tck = 1 (yes, obviously). For example, a dotted grid is created by

axis(1, tck = 1, lty = 2); axis(2, tck = 1, lty = 2)

and the location of the grid lines can be specified using at=.

Adding legends

Legends are added by the function legend. Since it can label many types of vari-
ation such as line type and width, plot symbol, colour, and fill type, its description
is very complex. All calls are of the form

legend(x, y, legend, ...)

where x and y give either the upper left corner of the legend box or both upper
left and lower right corners. These are often most conveniently specified on-
screen by using locator(1) or locator(2). Argument legend is a character
vector giving the labels for each variation. Most of the remaining arguments are
vectors of the same length as legend giving the appropriate coding for each
variation, by lty=, lwd=, col=, fill=, angle= and density=. Argument
pch is a single character string concatenating the symbols; for numerical pch in
S-PLUS use the vector argument marks .

By default the legend is contained in a box; the drawing of this box can be
suppressed by argument bty = "n".

The Trellis function key provides a more flexible approach to constructing
legends, and can be used with basic plots. (See page 104 for further details.)

82 Graphics

Non-English labels
Non-native English speakers will often want to include characters from their other
languages in labels. For Western European languages written in ISO-latin1 en-
coding this will normally work; it does for all the R devices and for motif and
graphsheet devices in S-PLUS. To use such characters with the postscript
device under S-PLUS, set

ps.options(setfont = ps.setfont.latin1)

If you are unable to enter the characters from the keyboard, octal escapes of
the form "\341" (which encodes á) can be used.

R’s postscript device allows arbitrary encodings via its encoding param-
eter, and S-PLUS’s ps.setfont.latin1 could be modified to use a different
encoding such as ISO-latin2.

Mathematics in labels
Users frequently wish to include the odd subscript, superscript and mathematical
symbol in labels. There is no general solution, but for the S-PLUS postscript
driver8 Alan Zaslavsky’s package postscriptfonts adds these features. We
can label Figure 7.3 (on page 209) by λ (from font 13, the PostScript symbol
font).

library(postscriptfonts)
x <- 0:100
plik <- function(lambda)

sum(dpois(x, lambda) * 2 * ((lambda - x) +
x * log(pmax(1, x)/lambda)))

lambda <- c(1e-8, 0.05, seq(0.1, 5, 0.1))
plot(lambda, sapply(lambda, plik), type = "l",

ylim = c(0, 1.4), ylab = "", xlab = "")
abline(h = 1, lty = 3)
mixed.mtext(texts = "l", side = 1, line = 3, font = 13) # xlab
mixed.mtext(texts = "E~f13~d~.l~f1~.(deviance)", adj = 0.5,

side = 2, line = 3, font = 13) # ylab

R has rather general facilities to label with mathematics: see ?plotmath
and Murrell and Ihaka (2000). Here we could use (on most devices, including
on-screen)

plot(lambda, sapply(lambda, plik), type = "l", ylim = c(0, 1.4),
xlab = expression(lambda),
ylab = expression(paste(E[lambda], "(deviance)")))

4.4 Fine Control of Graphics

The graphics process is controlled by graphics parameters, which are set for each
graphics device. Each time a new device is opened these parameters for that

8Under UNIX orWindows.

4.4 Fine Control of Graphics 83

device are reset to their default values. Graphics parameters may be set, or their
current values queried, using the par function. If the arguments to par are of the
name = value form the graphics parameter name is set to value, if possible,
and other graphics parameters may be reset to ensure consistency. The value
returned is a list giving the previous parameter settings. Instead of supplying the
arguments as name = value pairs, par may also be given a single list argument
with named components.

If the arguments to par are quoted character strings, "name", the current
value of graphics parameter name is returned. If more than one quoted string is
supplied the value is a list of the requested parameter values, with named com-
ponents. The call par() with no arguments returns a list of all the graphics
parameters.

Some of the many graphics parameters are given in Tables 4.3 and 4.4 (on
pages 84 and 87). Those in Table 4.4 can also be supplied as arguments to high-
level plot functions, when they apply just to the figure produced by that call. (The
layout parameters are ignored by the high-level plot functions.)

The figure region and layout parameters

When a device is opened it makes available a rectangular surface, the device re-
gion, on which one or more plots may appear. Each plot occupies a rectangular
section of the device surface called a figure. A figure consists of a rectangular plot
region surrounded by a margin on each side. The margins or sides are numbered
one to four, clockwise starting from the bottom. The plot region and margins
together make up the figure region, as in Figure 4.5 on page 81. The device sur-
face, figure region and plot region have their vertical sides parallel and hence their
horizontal sides also parallel.

The size and position of figure and plot regions on a device surface are con-
trolled by layout parameters, most of which are listed in Table 4.3. Lengths may
be set in either absolute or relative units. Absolute lengths are in inches, whereas
relative lengths are in text lines (so relative to the current font size).

Margin sizes are set using mar for text lines or mai for inches. These are
four-component vectors giving the sizes of the lower, left, upper and right margins
in the appropriate units. Changing one causes a consistent change in the other;
changing mex will change mai but not mar.

Positions may be specified in relative units using the unit square as a coordi-
nate system for which some enclosing region, such as the device surface or the
figure region, is the unit square. The fig parameter is a vector of length four
specifying the current figure as a fraction of the device surface. The first two
components give the lower and upper x-limits and the second two give the y-
limits. Thus to put a point plot in the left-hand side of the display and a Q-Q plot
on the right-hand side we could use:

postscript(file = "twoplot.ps") # open a postscript device
par(fig = c(0, 2/3, 0, 1)) # set a figure on the left
plot(x, y) # point plot
par(fig = c(2/3, 1, 0, 1)) # set a figure on the right

84 Graphics

Table 4.3: Some graphics layout parameters with example settings.

din, fin, pin Absolute device size, figure size and plot region size in inches.
fin = c(6, 4)

fig Define the figure region as a fraction of the device region.
fig = c(0, 0.5, 0,1)

font Small positive integer determining a text font for characters and hence
an interline spacing. For S-PLUS’s postscript device one of the
standard PostScript fonts given by ps.options("fonts") . In R
font 1 is plain, font 2 italic, font 3 bold, font 4 bold italic and font 5 is
the symbol font. font = 3

mai, mar The four margin sizes, in inches (mai), or in text line units (mar, that
is, relative to the current font size). Note that mar need not be an
integer. mar = c(3, 3, 1, 1) + 0.1

mex Number of text lines per interline spacing. mex = 0.7

mfg Define a position within a specified multi-figure display.
mfg = c(2, 2, 3, 2)

mfrow, mfcol Define a multi-figure display. mfrow = c(2, 2)

new Logical value indicating whether the current figure has been used.
new = T

oma, omi, omd Define outer margins in text lines or inches, or by defining the size of
the array of figures as a fraction of the device region.
oma = c(0, 0, 4, 0)

plt Define the plot region as a fraction of the figure region.
plt = c(0.1, 0.9, 0.1, 0.9)

pty Plot type, or shape of plotting region, "s" or "m"
uin (not R) Return inches per user coordinate for x and y.
usr Limits for the plot region in user coordinates.

usr = c(0.5, 1.5, 0.75, 10.25)

qqnorm(resid(obj)) # diagnostic plot
dev.off()

The left-hand figure occupies 2/3 of the device surface and the right-hand figure
1/3. For regular arrays of figures it is simpler to use mfrow or split.screen.

Positions in the plot region may also be specified in absolute user coor-
dinates. Initially user coordinates and relative coordinates coincide, but any
high-level plotting function changes the user coordinates so that the x- and y-
coordinates range from their minimum to maximum values as given by the plot
axes. The graphics parameter usr is a vector of length four giving the lower
and upper x- and y-limits for the user coordinate system. Initially its setting is
usr = c(0,1,0,1). Consider another simple example:

> motif() # open a device
> par("usr") # usr coordinates
[1] 0 1 0 1

4.4 Fine Control of Graphics 85

mai[1]

omi[3]

omi[1]

mai[3]
m

ai
[2

]

m
ai

[4
]

fin[1]

fin
[2

]

om
i[2

]

pin[1]

pi
n[

2]

din[1]

di
n[

2]

om
i[4

]

mar = c(3,2,2,2)

mfg = c(2,2,3,2)

mfrow = c(3,2)

Figure 4.6: An outline of a 3 × 2 multi-figure display with outer margins showing some
graphics parameters. The current figure is at position (2, 2) and the display is being filled
by rows. In this figure “ fin[1] ” is used as a shorthand for par("fin")[1], and so on.

> x <- 1:20
> y <- x + rnorm(x) # generate some data
> plot(x, y) # produce a scatterplot
> par("usr") # user coordinates now match the plot
[1] 0.2400 20.7600 1.2146 21.9235

Any attempt to plot outside the user coordinate limits causes a warning message
unless the general graphics parameter xpd is set to T.

Figure 4.6 shows some of the layout parameters for a multi-figure layout.
Such an array of figures may occupy the entire device surface, or it may have
outer margins, which are useful for annotations that refer to the entire array. Outer
margins are set with the parameter oma (in text lines) or omi (in inches). Alter-
natively omd may be used to set the region containing the array of figures in a

86 Graphics

similar way to which fig is used to set one figure. This implicitly determines the
outer margins as the complementary region. In contrast to what happens with the
margin parameters mar and mai, a change to mex will leave the outer margin
size, omi, constant but adjust the number of text lines, oma.

Text may be put in the outer margins by using mtext with parameter
outer = T.

Common axes for figures

There are at least two ways to ensure that several plots share a common axis or
axes.
1. Use the same xlim or ylim (or both) setting on each plot and ensure
that the parameters governing the way axes are formed, such as lab, las,
xaxs and allies, do not change.

2. Set up the desired axis system with the first plot and then use par to set the
low-level parameter xaxs = "d", yaxs = "d" or both as appropriate.
This ensures that the axis or axes are not changed by further high-level plot
commands on the same device.

An example: A Q-Q normal plot with envelope

In Chapter 5 we recommend assessing distributional form by quantile-quantile
plots. A simple way to do this is to plot the sorted values against quantile approx-
imations to the expected normal order statistics and draw a line through the 25 and
75 percentiles to guide the eye, performed for the variable Infant.Mortality
of the Swiss provinces data (on fertility and socio-economic factors on Swiss
provinces in about 1888) by

in R just use data(swiss)
swiss <- data.frame(Fertility = swiss.fertility, swiss.x)
attach(swiss)
qqnorm(Infant.Mortality)
qqline(Infant.Mortality)

The reader should check the result and compare it with the style of Figure 4.7.
Another suggestion to assess departures is to compare the sample Q-Q plot

with the envelope obtained from a number of other Q-Q plots from generated
normal samples. This is discussed in (Atkinson, 1985, §4.2) and is based on an
idea of Ripley (see Ripley, 1981, Chapter 8). The idea is simple. We generate
a number of other samples of the same size from a normal distribution and scale
all samples to mean 0 and variance 1 to remove dependence on location and scale
parameters. Each sample is then sorted. For each order statistic the maximum and
minimum values for the generated samples form the upper and lower envelopes.
The envelopes are plotted on the Q-Q plot of the scaled original sample and form
a guide to what constitutes serious deviations from the expected behaviour under
normality. Following Atkinson our calculation uses 19 generated normal samples.

We begin by calculating the envelope and the x-points for the Q-Q plot.

4.4 Fine Control of Graphics 87

Table 4.4: Some of the more commonly used general and high-level graphics parameters
with example settings.

Text:
adj Text justification. 0 = left justify, 1 = right justify, 0.5 = centre.
cex Character expansion. cex = 2

csi Height of font (inches). csi = 0.11

font Font number: device-dependent.
srt String rotation in degrees. srt = 90

cin cxy Character width and height in inches and usr coordinates (for infor-
mation, not settable).

Symbols:
col Colour for symbol, line or region. col = 2

lty Line type: solid, dashed, dotted, etc. lty = 2

lwd Line width, usually as a multiple of default width. lwd = 2

mkh Mark height (inches). Ignored in R. mkh = 0.05

pch Plotting character or mark. pch = "*" or pch = 4 for marks.
(See page 74.)

Axes:
bty Box type, as "o", "l", "7", "c", "n".
exp (not R) Notation for exponential labels. exp = 1

lab Tick marks and labels. lab = c(3, 7, 4)
las Label orientation. 0 = parallel to axis, 1 = horizontal, 2 = vertical.
log Control log axis scales. log = "y"

mgp Axis location. mgp = c(3, 1, 0)

tck Tick mark length as signed fraction of the plot region dimension.
tck = -0.01

xaxp yaxp Tick mark limits and frequency. xaxp = c(2, 10, 4)

xaxs yaxs Style of axis limits. xaxs = "i"
xaxt yaxt Axis type. "n" (null), "s" (standard), "t" (time) or "l" (log).

High Level:
ann (R only) Should titles and axis labels be plotted?
ask Prompt before going on to next plot? ask = F

axes Print axes? axes = F

main Main title. main = "Figure 1"

sub Subtitle. sub = "23-Jun-2002"

type Type of plot. type = "n"

xlab ylab Axis labels. ylab = "Speed in km/sec"

xlim ylim Axis limits. xlim = c(0, 25)

xpd May points or lines go outside the plot region? xpd = T

88 Graphics

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-3

-2

-1

0

1

2

3

Quantiles of Standard Normal

Ri

Figure 4.7: The Swiss fertility data. A Q-Q normal plot with envelope for infant mortality.

samp <- cbind(Infant.Mortality, matrix(rnorm(47*19), 47, 19))
samp <- apply(scale(samp), 2, sort)
rs <- samp[, 1]
xs <- qqnorm(rs, plot = F)$x
env <- t(apply(samp[, -1], 1, range))

As an exercise in building a plot with specific requirements we now present
the envelope and Q-Q plot in a style very similar to Atkinson’s. To ensure that
the Q-Q plot has a y-axis large enough to take the envelope we could calculate
the y-limits as before, or alternatively use a matrix plot with type = "n" for
the envelope at this stage. The axes and their labels are also suppressed for the
present:

matplot(xs, cbind(rs, env), type = "pnn",
pch = 4, mkh = 0.06, axes = F, xlab = "", ylab = "")

The argument setting type = "pnn" specifies that the first column (rs) is to
produce a point plot and the remaining two (env) no plot at all, but the axes will
allow for them. Setting pch = 4 specifies a ‘cross’ style plotting symbol (see
Figure 4.2) similar to Atkinson’s, and mkh = 0.06 establishes a suitable size for
the plotting symbol.

Atkinson uses small horizontal bars to represent the envelope. We can now
calculate a half length for these bars so that they do not overlap and do not extend
beyond the plot region. Then we can add the envelope bars using segments :

xyul <- par("usr")
smidge <- min(diff(c(xyul[1], xs, xyul[2])))/2
segments(xs - smidge, env[, 1], xs + smidge, env[, 1])
segments(xs - smidge, env[, 2], xs + smidge, env[, 2])

Atkinson’s axis style differs from the defaultS style in several ways. There are
many more tick intervals; the ticks are inside the plot region rather than outside;

4.5 Trellis Graphics 89

there are more labelled ticks; and the labelled ticks are longer than the unlabelled.
From experience ticks along the x-axis at 0.1 intervals with labelled ticks at 0.5
intervals seems about right, but this is usually too close on the y-axis. The axes
require four calls to the axis function:

xul <- trunc(10*xyul[1:2])/10
axis(1, at=seq(xul[1], xul[2], by = 0.1), labels = F, tck = 0.01)
xi <- trunc(xyul[1:2])
axis(1, at = seq(xi[1], xi[2], by = 0.5), tck = 0.02)
yul <- trunc(5*xyul[3:4])/5
axis(2, at = seq(yul[1], yul[2], by = 0.2), labels = F, tck= 0.01)
yi <- trunc(xyul[3:4])
axis(2, at = yi[1]:yi[2], tck = 0.02)

Finally we add the L-box, put the x-axis title at the centre and the y-axis title
at the top:

box(bty = "l") # lower case "L"
S: ps.options()$fonts
mtext("Quantiles of Standard Normal", side=1, line=2.5, font=3)
S: mtext("Ri", side = 2, line = 2, at = yul[2], font = 10)
R: mtext(expression(R[i]), side = 2, line = 2, at = yul[2])

where in S-PLUS fonts 3 and 10 are Times-Roman and Times-Italic on the device
used (postscript under UNIX), found from the list given by ps.options().

The final plot is shown in Figure 4.7 on page 88.

4.5 Trellis Graphics

Trellis graphics were developed to provide a consistent graphical ‘style’ and to
extend conditioning plots; the style is a development of that used in Cleveland
(1993).

Trellis is very prescriptive, and changing the display style is not always an
easy matter.

It may be helpful to understand that Trellis is written entirely in the S lan-
guage, as calls to the basic plotting routines. Two consequences are that it can be
slow and memory-intensive, and that it takes over many of the graphics parame-
ters for its own purposes. (Global settings of graphics parameters are usually not
used, the outer margin parameters omi being a notable exception.) Computation
of a Trellis plot is done in two passes: once when a Trellis object is produced, and
once when that object is printed (producing the actual plot).

The trellis library contains a large number of examples: use
?trellis.examples

to obtain an up-to-date list. These are all functions that can be called to plot the
example, and listed to see how the effect was achieved.

R has a similar system in its package lattice ; however, that is built on a
different underlying graphics model called grid and mixes (even) less well with
traditional S graphics. This runs most of the examples shown here, but the output
will not be identical.

90 Graphics

Trellis graphical devices
The trellis.device graphical device is provided by the trellis library. It
is perhaps more accurate to call it a meta-device, for it uses one of the underlying
graphical devices,9 but customizes the parameters of the device to use the Trellis
style, and in particular its colour schemes.

Trellis graphics is intended to be used on a trellis.device device, and
may give incorrect results on other devices.

Trellis devices by default use colour for screen windows and greylevels for
printer devices. The settings for a particular device can be seen by running the
command show.settings() . These settings are not the same for all colour
screens, nor for all printer devices. Trellis colour schemes have a mid-grey back-
ground on colour screens (but not colour printers). If a Trellis plot is used without
a graphics device already in use, a suitable Trellis device is started.

Trellis model formulae
Trellis graphics functions make use of the language for model formulae described
in Section 3.7. The Trellis code for handling model formulae to produce a data
matrix from a data frame (specified by the data argument) allows the argument
subset to select a subset of the rows of the data frame, as one of the first three
forms of indexing vector described on page 27. (Character vector indices are not
allowed.)

There are a number of inconsistencies in the use of the formula language.
There is no na.action argument, and missing values are handled inconsistently;
generally rows with NAs are omitted, but splom fails if there are missing values.
Surprisingly, splom uses a formula, but does not accept a data argument.

Trellis uses an extension to the model formula language, the operator ‘| ’
which can be read as ‘given’. Thus if a is a factor, lhs ~ rhs | a will produce
a plot for each level of a of the subset of the data for which a has that level (so
estimating the conditional distribution given a). Conditioning on two or more
factors gives a plot for each combination of the factors, and is specified by an
interaction, for example, | a*b. For the extension of conditioning to continuous
variates via what are known as shingles, see page 101.

Trellis plot objects can be kept, and update can be used to change them, for
example, to add a title or change the axis labels, before re-plotting by printing
(often automatically as the result of the call to update).

Basic Trellis plots
As Table 4.5 shows, the basic styles of plot exist in Trellis, but with different
names and different default styles. Their usage is best seen by considering how to
produce some figures in the Trellis style.

Figure 1.2 (page 9) was produced by splom(~ hills). Trellis plots of scat-
terplot matrices read from bottom to top (as do all multi-panel Trellis displays,

9Currently motif, postscript, graphsheet, win.printer, pdf.graph, wmf.graph and
java.graph where these are available.

4.5 Trellis Graphics 91

Table 4.5: Trellis plotting functions. Page references are given to the most complete de-
scription in the text.

Function Page Description

xyplot 94 Scatterplots.
bwplot 92 Boxplots.
stripplot 98 Display univariate data against a numerical variable.
dotplot ditto in another style,
histogram ‘Histogram’, actually a frequency plot.
densityplot Kernel density estimates.
barchart Horizontal bar charts.
piechart Pie chart.

splom 90 Scatterplot matrices.

contourplot 76 Contour plot of a surface on a regular grid.
levelplot 94 Pseudo-colour plot of a surface on a regular grid.
wireframe 94 Perspective plot of a surface evaluated on a regular grid.
cloud 104 A perspective plot of a cloud of points.

key 104 Add a legend.
color.key 94 Add a color key (as used by levelplot).
trellis.par.get 93 Save Trellis parameters.
trellis.par.set 93 Reset Trellis parameters.
equal.count 102 Compute a shingle.

like graphs rather than matrices, despite the meaning of the name splom). By
default the panels in a splom plot are square.

Figure 4.8 is a Trellis version of Figure 1.4. Note that the y-axis numbering is
horizontal by default (equivalent to the option par(las = 1)), and that points
are plotted by open circles rather than filled circles or stars. It is not possible to
add to a Trellis plot,10 so the Trellis call has to include all the desired elements.
This is done by writing a panel function, in this case

R: library(lqs)
xyplot(time ~ dist, data = hills,

panel = function(x, y, ...) {
panel.xyplot(x, y, ...)
panel.lmline(x, y, type = "l")
panel.abline(lqs(y ~ x), lty = 3)
identify(x, y, row.names(hills))

}

10As the user coordinate system is not retained; but the plot call can be updated by update and
re-plotted.

92 Graphics

Knock Hill

Bens of Jura

Two Breweries

Moffat Chase

Lairig Ghru

Seven Hills

50

100

150

200

5 10 15 20 25

dist

tim
e

Figure 4.8: A Trellis version of Figure 1.4 (page 10).

1

2

3

4

5

700 800 900 1000

Speed

Ex
pe

rim
en

t N
o.

Speed of Light Data

Figure 4.9: A Trellis version of Figure 1.5 (page 11).

)

Figure 4.9 is a Trellis version of Figure 1.5. Boxplots are known as box-and-
whisker plots, and are displayed horizontally. This figure was produced by

bwplot(Expt ~ Speed, data = michelson, ylab = "Experiment No.")
title("Speed of Light Data")

Note the counter-intuitive way the formula is used. This plot corresponds to a
one-way layout splitting Speed by experiment, so it is tempting to use Speed as
the response. It may help to remember that the formula is of the y ~ x form for
the x- and y-axes of the plot. (The same ordering is used for all the univariate
plot functions.)

4.5 Trellis Graphics 93

40 50 60

70 80 90

70

80

90

40

50

60Fertility

20 40

60 80

60

80

20

40Agriculture

 5 10 15 20

20 25 30 35

20

25

30

35

 5

10

15

20Examination

10 20 30

30 40 50

30

40

50

10

20

30Education

 20 40 60

 60 80 100

 60

 80

100

 20

 40

 60

Catholic

12 14 16 18

20 22 24 26

20

22

24

26

12

14

16

18Infant.Mortality

Figure 4.10: A Trellis scatterplot matrix display of the Swiss provinces data.

Figure 4.10 is an enhanced scatterplot matrix, again using a panel func-
tion to add to the basic display. Now we see the power of panel functions,
as the basic plot commands can easily be applied to multi-panel displays. The
aspect = "fill" command allows the array of plots to fill the space; by de-
fault the panels are square as in Figure 1.2.

splom(~ swiss, aspect = "fill",
panel = function(x, y, ...) {

panel.xyplot(x, y, ...); panel.loess(x, y, ...)
}

)

Most Trellis graphics functions have a groups parameter, which we can il-
lustrate on the stormer data used in Section 8.4 (see Figure 4.11).

sps <- trellis.par.get("superpose.symbol")
sps$pch <- 1:7
trellis.par.set("superpose.symbol", sps)
xyplot(Time ~ Viscosity, data = stormer, groups = Wt,

panel = panel.superpose, type = "b",
key = list(columns = 3,

text = list(paste(c("Weight: ", "", ""),
unique(stormer$Wt), "gms")),

points = Rows(sps, 1:3)
)

)

94 Graphics

50

100

150

200

250

50 100 150 200 250 300

Viscosity

Ti
m

e

Weight: 20 gms 50 gms 100 gms

Figure 4.11: A Trellis plot of the stormer data.

Here we have changed the default plotting symbols (which differ by device) to
the first seven pch characters shown in Figure 4.2 on page 74. (We could just use
the argument pch = 1:7 to xyplot, but then specifying the key becomes much
more complicated.)

Figure 4.12 shows further Trellis plots of the smooth surface shown in
Figure 4.3. Once again panel functions are needed to add the points. The
aspect = 1 parameter ensures a square plot. The drape = T parameter to
wireframe is optional, producing the superimposed greylevel (or pseudo-colour)
plot.

topo.plt <- expand.grid(topo.mar)
topo.plt$pred <- as.vector(predict(topo.loess, topo.plt))
levelplot(pred ~ x * y, topo.plt, aspect = 1,

at = seq(690, 960, 10), xlab = "", ylab = "",
panel = function(x, y, subscripts, ...) {

panel.levelplot(x, y, subscripts, ...)
panel.xyplot(topo$x,topo$y, cex = 0.5, col = 1)

}
)
wireframe(pred ~ x * y, topo.plt, aspect = c(1, 0.5),

drape = T, screen = list(z = -150, x = -60),
colorkey = list(space="right", height=0.6))

(The arguments given by colorkey refer to the color.key function.) There is
no simple way to add the points to the perspective display.

Trellises of plots
In multivariate analysis we necessarily look at several variables at once, and we
explore here several ways to do so. We can produce a scatterplot matrix of the
first three principal components of the crabs data (see page 302) by

4.5 Trellis Graphics 95

0

1

2

3

4

5

6

0 1 2 3 4 5 6

700

750

800

850

900

950

x

pred

pred

700

750

800

850

900

950

Figure 4.12: Trellis levelplot and wireframe plots of a loess smoothing of the
topo dataset.

lcrabs.pc <- predict(princomp(log(crabs[,4:8])))
crabs.grp <- c("B", "b", "O", "o")[rep(1:4, each = 50)]
splom(~ lcrabs.pc[, 1:3], groups = crabs.grp,

panel = panel.superpose,
key = list(text = list(c("Blue male", "Blue female",

"Orange Male", "Orange female")),
points = Rows(trellis.par.get("superpose.symbol"), 1:4),
columns = 4)

)

A ‘black and white’ version of this plot is shown in Figure 4.13. On a ‘colour’
device the groups are distinguished by colour and are all plotted with the same
symbol (o).

However, it might be clearer to display these results as a trellis of splom
plots, by

sex <- crabs$sex; levels(sex) <- c("Female", "Male")
sp <- crabs$sp; levels(sp) <- c("Blue", "Orange")

96 Graphics

-1.5 -1.0 -0.5

-0.5 0.0 0.5

-0.5

 0.0

 0.5

-1.5

-1.0

-0.5
Comp. 1

+
+
+

++
+

+
+

+

++

+
+++
+
+++
++
+

+

++ ++
+
+
+
+
++
++
+
++
++

++
+++
+
+
+
+

+

>

>
>>> >

>>
>

>

>
>

>>

>

>
>

>>

>

>

>
>

>>
>

>
>>
>

>
>
>

>>
>

>
>

>>
>
>

>
>
>

>

>>
>

>s

s s

s

s s

s
s

s
s

s

s
ss
sss
sss

ss

s

s

s
sss

s

s

ss

s

ssss

s

ss

s

ss
s

ss

sss

s

+
++ +

+
+

+
+
+++

++++
++

+

++
++
++
+

++
+++

+
+

+
++
++

+
+
++++++

+
+
++
+

>

>

>
>>

>
>
>

>
>
>

>
>

>
>
>
>

>>
>
>
>
>>
>
>>>

>>
>

>
>>>>>>>
>

>>>
>
>

>
>>>>

ss sss s

s
s
ss
s
s
s
sssss

ss
s
ssss

s

ss
ss

s
s

s
ss
ss

ss

s
s
s
ss s
ssss

s

+
++
++

+++ +++ ++++++++++ ++ ++
++ ++ ++++ +++ ++++ +++++++++ +

>

> >>>>>>> >> >
>>> >> >>> >> > >>> >>> >> >> >>> >> >>>> >>> >>> > >

s s
ss ss

s ss s ssss s sss ss sss ss
ssss ssss sssss ss sss s
ss sss

s
-0.15 -0.10 -0.05

 0.00 0.05 0.10

 0.00

 0.05

 0.10

-0.15

-0.10

-0.05

Comp. 2

+
++
+

+
+

+
+

+++
++++

++

+

++
+ ++ +

+

++
++
+

+
+

+
++

+ +

+
+

+ +++++
+

+
++

+
>

>

>
>>
>

>
>

>
>

>

>
>

>
>

>
>

>>
>

>
>

> >
>

> >>
> >

>

>
> >>
> >> >>

>> >>
>

>
>> > >

s s
ss ss

s
s

s s
s

s
s

s s sss
ss

s
ss ss

s

ss
s s

s
s

s
ss
ss

s s

s
s

s
s ss

s sss
s

+
++

+ ++++ ++
+ ++++ +++ ++++++ +

++ ++++ ++ ++ +++ ++++
+++ ++ +++

>

> >>> >> >> >> >
> > >>> >>

> >>>>> >>>
>>> >>>>>>>>>>>>>> >>>>

>

ss
ss

ss
s sss sss sssss sss ssss

s ssss s ss ssss
ss ss sss

s ssss
s

+
+

+
+ +

+

+
+

+

++

+
+++

+
++ +++

+

+

+ +++
+
+

+
+

++
++

+
++

++

++
+++
+

+
+

+

+

>

>
>>>
>

> >
>

>

>
>

> >

>

>
>

>>

>

>

>
>

>>
>

>
> >

>

>
>

>
>>

>
>

>

>>
>
>

>
>

>

>

>>
>

> s

ss

s

ss

s
s

s
s

s

s
s s

sss
s ss

s s

s

s

s
s ss

s

s

s s

s

ssss

s

s s

s

ssss s

sss

s

-0.10 -0.05 0.00

 0.00 0.05 0.10

 0.00

 0.05

 0.10

-0.10

-0.05

 0.00Comp. 3

Blue male Blue female Orange Male Orange female+ > s

Figure 4.13: A scatterplot matrix of the first three principal components of the crabs
data.

splom(~ lcrabs.pc[, 1:3] | sp*sex, cex = 0.5, pscales = 0)

as shown in Figure 4.14. Notice how this is the easiest method to code. It is at the
core of the paradigm of Trellis, which is to display many plots of subsets of the
data in some meaningful layout.

Now consider data from a multi-factor study, Quine’s data on school absences
discussed in Sections 6.6 and 7.4. It will help to set up more informative factor
labels, as the factor names are not given (by default) in trellises of plots.

Quine <- quine
levels(Quine$Eth) <- c("Aboriginal", "Non-aboriginal")
levels(Quine$Sex) <- c("Female", "Male")
levels(Quine$Age) <- c("primary", "first form",

"second form", "third form")
levels(Quine$Lrn) <- c("Average learner", "Slow learner")
bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine)

This gives an array of eight boxplots, which by default takes up two pages. On
a screen device there will be no pause between the pages unless the argument
ask = T is set for par. It is more convenient to see all the panels on one page,
which we can do by asking for a different layout (Figure 4.15). We also suppress
the colouring of the strip labels by using style = 1 ; there are currently six
preset styles.

bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine, layout = c(4, 2),
strip = function(...) strip.default(..., style = 1))

4.5 Trellis Graphics 97

Comp. 1

Comp. 2

Comp. 3

Blue
Female

Comp. 1

Comp. 2

Comp. 3

Orange
Female

Comp. 1

Comp. 2

Comp. 3

Blue
Male

Comp. 1

Comp. 2

Comp. 3

Orange
Male

Figure 4.14: A multi-panel version of Figure 4.13.

primary

first form

second form

third form

0 20 40 60 80

Female
Average learner

Aboriginal

Male
Average learner

Aboriginal

0 20 40 60 80

Female
Slow learner
Aboriginal

Male
Slow learner
Aboriginal

primary

first form

second form

third form

Female
Average learner
Non-aboriginal

0 20 40 60 80

Male
Average learner
Non-aboriginal

Female
Slow learner

Non-aboriginal

0 20 40 60 80

Male
Slow learner

Non-aboriginal

Days

Figure 4.15: A multi-panel boxplot of Quine’s school attendance data.

98 Graphics

primary

first form

second form

third form

0 20 40 60 80

Eth: Aboriginal
Sex: Female

+

+++ + + ++ + ++

+ ++ + ++ + +

Eth: Non-aboriginal
Sex: Female

+

++++ +++++ + +

+ + ++++ +++

primary

first form

second form

third form

Eth: Aboriginal
Sex: Male

+ + +

++ +

+ + + +

0 20 40 60 80

Eth: Non-aboriginal
Sex: Male

+ + +

++ +++ + +

+ + +

Days of absence

Average learner Slow learner +

Figure 4.16: A stripplot of Quine’s school attendance data.

A stripplot allows us to look at the actual data. We jitter the points slightly
to avoid overplotting.

stripplot(Age ~ Days | Sex*Lrn*Eth, data = Quine,
jitter = T, layout = c(4, 2))

stripplot(Age ~ Days | Eth*Sex, data = Quine,
groups = Lrn, jitter = T,
panel = function(x, y, subscripts, jitter.data = F, ...) {

if(jitter.data) y <- jitter(y)
panel.superpose(x, y, subscripts, ...)

},
xlab = "Days of absence",
between = list(y = 1), par.strip.text = list(cex = 0.7),
key = list(columns = 2, text = list(levels(Quine$Lrn)),

points = Rows(trellis.par.get("superpose.symbol"), 1:2)
),

strip = function(...)
strip.default(..., strip.names = c(T, T), style = 1)

)

The second form of plot, shown in Figure 4.16, uses different symbols to distin-
guish one of the factors. We include the factor name in the strip labels, using a
custom strip function.

The Trellis function dotplot is very similar to stripplot ; its panel func-
tion includes horizontal lines at each level. Function stripplot uses the styles
of xyplot whereas dotplot has its own set of defaults; for example, the default
plotting symbol is a filled rather than open circle.

4.5 Trellis Graphics 99

WinF

WinNF

Veh

Con

Tabl

Head

-5 0 5 10 15

RI

12 14 16

Na

0 1 2 3 4

Mg

WinF

WinNF

Veh

Con

Tabl

Head

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Al

70 71 72 73 74 75

Si

0 1 2 3 4 5 6

K

WinF

WinNF

Veh

Con

Tabl

Head

6 8 10 12 14 16

Ca

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Ba

0.0 0.1 0.2 0.3 0.4 0.5

Fe

Figure 4.17: Plot by stripplot of the forensic glass dataset fgl.

As a third example, consider our dataset fgl. This has 10 measurements
on 214 fragments of glass from forensic testing, the measurements being of the
refractive index and composition (percent weight of oxides of Na, Mg, Al, Si, K,
Ca, Ba and Fe). The fragments have been classified by six sources. We can look
at the types for each measurement by

fgl0 <- fgl[, -10] # omit type.
fgl.df <- data.frame(type = rep(fgl$type, 9),

y = as.vector(as.matrix(fgl0)),
meas = factor(rep(1:9, each = 214), labels = names(fgl0)))

stripplot(type ~ y | meas, data = fgl.df,
scales = list(x = "free"), xlab = "", cex = 0.5,
strip = function(...) strip.default(style = 1, ...))

Layout of a trellis

A trellis of plots is generated as a sequence of plots that are then arranged in
rows, columns and pages. The sequence is determined by the order in which the
conditioning factors are given: the first varying fastest. The order of the levels of
the factor is that of its levels attribute.

100 Graphics

1.0
1.1
1.2
1.3

Neg

0.0 1.0

Neg Neg

0.0 1.0

Neg Neg

0.0 1.0

Neg Neg

0.0 1.0

Neg

Neg Neg Neg Neg Neg Neg Neg

1.0
1.1
1.2
1.3

Neg
1.0
1.1
1.2
1.3

Neg Neg Neg Neg Neg Neg Neg Neg

Neg Neg Neg Neg
•

Neg Neg
•

Neg

1.0
1.1
1.2
1.3

Neg
1.0
1.1
1.2
1.3

Prob Prob

0.0 1.0

Prob Prob

0.0 1.0

Prob Poss Poss

0.0 1.0

scan interval (years)

ve
nt

ric
le

/b
ra

in
 v

ol
um

e

Figure 4.18: The presentation of results from a study of 39 subjects. In a real applica-
tion this could be larger and so less dominated by the labels. Colour could be used to
distringuish groups, too.

How the sequence of plots is displayed on the page(s) is controlled by an
algorithm that tries to optimize the use of the space available, but it can be con-
trolled by the layout parameters. A specification layout = c(c, r, p) asks for
c columns, r rows and p pages. (Note the unusual ordering.) Using c = 0
allows the algorithm to choose the number of columns; p is used to produce only
the first p pages of a many-page trellis.

If the number of levels of a factor is large and not easily divisible (for example,
seven), we may find a better layout by leaving some of the cells of the trellis empty
using the skip argument. Figure 4.18 shows another use of layout and skip .

The between parameter can be used to specify gaps in the trellis layout, as
in Figure 4.16. It is a list with x and y components, numeric vectors that specify
the gaps in units of character height. The page parameter can be used to invoke
a function (with argument n, the page number) to label each page. The default
page function does nothing.

Subscripts and groups

The subscripts argument of the panel function is supplied if the Trellis func-
tion is called with argument subscripts = T .11 Then its value is a numeric
vector of indices of cases (normally rows of data) that have been passed to that
panel.

11And it seems sometimes even if it is not.

4.5 Trellis Graphics 101

Figure 4.18 shows the use of Trellis to present the results of a real study. There
were 39 subjects in three groups (marked on the strips), each being brain-scanned
2–4 times over up to 18 months. The plot shows the data and for each patient a
dashed line showing the mean rate of change for the alloted group. Two patients
whose panels are marked with a dot were later shown to have been incorrectly
allocated to the ‘normals’ group.

Note how we arrange the layout to separate the groups. We make use of the
subscripts argument to the panel function to identify the subject; vector pr3
holds a set of predictions at the origin and after 1.5 years from a linear mixed-
effects model.

xyplot(ratio ~ scant | subject, data = A5,
xlab = "scan interval (years)",
ylab = "ventricle/brain volume",
subscripts = T, ID = A5$ID,
strip = function(factor, ...)

strip.default(..., factor.levels = labs, style = 1),
layout = c(8, 5, 1),
skip = c(rep(F, 37), rep(T, 1), rep(F, 1)),
panel = function(x, y, subscripts, ID) {

panel.xyplot(x, y, type = "b", cex = 0.5)
which <- unique(ID[subscripts])
panel.xyplot(c(0, 1.5), pr3[names(pr3) == which],

type = "l", lty = 3)
if(which == 303 || which == 341) points(1.4, 1.3)

})

Note how other arguments, here ID , are passed to the panel function as addi-
tional arguments. One special extra argument is groups which is interpreted by
panel.superpose , as in Figure 4.11.

Conditioning plots and shingles

The idea of a trellis of plots conditioning on combinations of one or more factors
can be extended to conditioning on real-valued variables, in what are known as
conditioning plots or coplots. Two variables are plotted against each other in
a series of plots with the values of further variable(s) restricted to a series of
possibly overlapping ranges. This needs an extension of the concept of a factor
known as a shingle.12

Suppose we wished to examine the relationship between Fertility and
Education in the Swiss fertility data as the variable Catholic ranges from
predominantly non-Catholic to mainly Catholic provinces. We add a smooth fit
to each panel (and span controls the smoothness: see page 423).

Cath <- equal.count(swiss$Catholic, number = 6, overlap = 0.25)
xyplot(Fertility ~ Education | Cath, data = swiss,

span = 1, layout = c(6, 1), aspect = 1,
panel = function(x, y, span) {

12In American usage this is a rectangular wooden tile laid partially overlapping on roofs or walls.

102 Graphics

40

50

60

70

80

90

0 10 20 30 40 50

Cath

0 10 20 30 40 50

Cath

0 10 20 30 40 50

Cath

0 10 20 30 40 50

Cath

0 10 20 30 40 50

Cath

0 10 20 30 40 50

Cath

Education

Fe
rti
lit
y

Figure 4.19: A conditioning plot for the Swiss provinces data.

40
50
60
70
80
90

0 10 20 30 40 50

Agr
Cath2

Agr
Cath2

0 10 20 30 40 50

Agr
Cath2

Agr
Cath2

0 10 20 30 40 50

Agr
Cath2

40
50
60
70
80
90

Agr
Cath2

Education

Fe
rti
lit
y

Figure 4.20: Another conditioning plot with two conditioning shingles. The upper row
shows the predominantly Catholic provinces.

panel.xyplot(x, y); panel.loess(x, y, span)
}

)

The result is shown in Figure 4.19, with the strips continuing to show the (now
overlapping) coverage for each panel. Fertility generally falls as education rises
and rises as the proportion of Catholics in the population rises. Note that the level
of education is lower in predominantly Catholic provinces.

The function equal.count is used to construct a shingle with suitable ranges
for the conditioning intervals.

Conditioning plots may also have more than one conditioning variable. Let us
condition on Catholic and agriculture simultaneously. Since the dataset is small it
seems prudent to limit the number of panels to six in all.

Cath2 <- equal.count(swiss$Catholic, number = 2, overlap = 0)
Agr <- equal.count(swiss$Agric, number = 3, overlap = 0.25)
xyplot(Fertility ~ Education | Agr * Cath2, data = swiss,

span = 1, aspect = "xy",
panel = function(x, y, span) {

panel.xyplot(x, y); panel.loess(x, y, span)
}

)

4.5 Trellis Graphics 103

1

2

3

4

5

6

0 20 40 60 80 100

Cath

Pa
ne
l

Figure 4.21: A plot of the shingle Cath.

The result is shown in Figure 4.20. In general, the fertility rises with the propor-
tion of Catholics and agriculture and falls with education. There is no convincing
evidence of substantial interaction.

Shingles have levels, and can be printed and plotted:

> Cath
Data:
[1] 10.0 84.8 93.4 33.8 5.2 90.6 92.9 97.2 97.7 91.4

....
Intervals:

min max count
2.2 4.5 10
4.2 7.7 10
....

Overlap between adjacent intervals:
[1] 3 2 3 2 3
> levels(Cath)

min max
2.2 4.5
....

> plot(Cath, aspect = 0.3)

Multiple displays per page

Recall from page 89 that a Trellis object is plotted by printing it. The method
print.trellis has optional arguments position, split and more. The ar-
gument more should be set to T for all but the last part of a figure. The position
of individual parts on the device surface can be set by either split or position.
A split argument is of the form c(x, y, nx, ny) for four integers. The second
pair gives a division into a nx × ny layout, just like the mfrow and mfcol ar-
guments to par. The first pair gives the rectangle to be used within that layout,
with origin at the bottom left.

A position argument is of the form c(xmin, ymin, xmax, ymax) giving the
corners of the rectangle within which to plot the object. (This is a different order
from split.screen.) The coordinate system for this rectangle is [0, 1] for both
axes, but the limits can be chosen outside this range.

The print.trellis works by manipulating the graphics parameter omi,
so the outer margin settings are preserved. However, none of the basic meth-
ods (page 78) of subdividing the device surface will work, and if a trellis print

104 Graphics

fails omi is not reset. (Using par(omi = rep(0, 4), new = F) will reset
the usual defaults.)

Fine control

Detailed control of Trellis plots may be accomplished by a series of arguments
described in the help page for trellis.args, with variants for the wireframe
and cloud perspective plots under trellis.3d.args.

We have seen some of the uses of panel functions. Some care is needed with
computations inside panel functions that use any data (or user-defined objects or
functions) other than their arguments. First, the computations will occur inside a
deeply nested set of function calls, so care is needed to ensure that the data are
visible, often best done by passing the data as extra arguments. Second, those
computations will be done at the time the result is printed (that is, plotted) and so
the data need to be in the desired state at plot time, not just when the trellis object
is created.

If non-default panel functions are used, we may want these to help control
the coordinate system of the plots, for example, to use a fitted curve to decide
the aspect ratio of the panels. This is the purpose of the prepanel argument,
and there are prepanel functions corresponding to the densityplot, lmline,
loess, qq, qqmath and qqmathline panel functions. These will ensure that
the whole of the fitted curve is visible, and they may affect the choice of aspect
ratio.

The parameter aspect controls the aspect ratio of the panels. A numerical
value (most usefully one) sets the ratio, "fill" adjusts the aspect ratio to fill
the space available and "xy" attempts to bank the fitted curves to ±45◦. (See
Figure 4.20.)

The scales argument determines how the x and y axes are drawn. It
is a list of components of name = value form, and components x and y
may themselves be lists. The default relation = "same" ensures that the
axes on each panel are identical. With relation = "sliced" the same num-
bers of data units are used, but the origin may vary by panel, whereas with
relation = "free" the axes are drawn to accommodate just the data for that
panel. One can also specify most of the parameters of the axis function, and
also log = T to obtain a log10 scale or even log = 2 for a log2 scale.

The function splom has an argument varnames which sets the names of the
variables plotted on the diagonal. The argument pscales determines how the
axes are plotted; set pscales = 0 to omit them.

Keys
The function key is a replacement for legend, and can also be used as an argu-
ment to Trellis functions. If used in this way, the Trellis routines allocate space
for the key, and repeat it on each page if the trellis extends to multiple pages.

The call of key specifies the location of the key by the arguments x, y and
corner. By default corner = c(0, 1), when the coordinate (x, y) specifies
the upper left corner of the key. Any other coordinate of the key can be specified

4.5 Trellis Graphics 105

by setting corner, but the size of the key is computed from its contents. (If the
argument plot = F, the function returns a two-element vector of the computed
width and height, which can be used to allocate space.) When key is used as an
argument to a Trellis function, the position is normally specified not by x and y
but by the argument space which defaults to "top".

Most of the remaining arguments to key will specify the contents of the
key. The (optional) arguments points, lines, text and rectangles (for
barchart) will each specify a column of the key in the order in which they ap-
pear. Each argument must be a list giving the graphics parameters to be used (and
for text, the first argumentmust be the character vector to be plotted). (The func-
tion trellis.par.get is useful to retrieve the actual settings used for graphics
parameters.)

The third group of arguments to key fine-tunes its appearance—should
it be transparent (transparent = T), the presence of a border (specified by
giving the border colour as argument border), the spacing between columns
(between.columns in units of character width), the background colour, the
font(s) used, the existence of a title and so on. Consult the on-line help for the
current details. The argument columns specifies the number of columns in the
key—we used this in Figures 4.11 and 4.13.

Perspective plots
The argument aspect is a vector of two values for the perspective plots, giving
the ratio of the y and z sizes to the x size; its effect can be seen in Figure 4.12.

The arguments distance, perspective and screen control the perspec-
tive view used. If perspective = T (the default), the distance argument
(default 0.2) controls the extent of the perspective, although not on a physical
distance scale as 1 corresponds to viewing from infinity. The screen argument
(default list(z = 40, x = -60)) is a list giving the rotations (in degrees) to
be applied to the specified axis in turn. The initial coordinate system has x point-
ing right, z up and y into the page.

The argument zoom (default 1) may be used to scale the final plot, and the
argument par.box controls how the lines forming the enclosing box are plotted.

