Table 6.5: Statistical models in R. Lower case letters denote continuous numeric variables and uppercase letters denote factors. Note that the error term is always implicit.

Effects model	R Model formular	Description
$y_i = \beta_0 + \beta_1 x_i$	y ~ 1 + x y ~ x	Simple linear regression mode of y on x with intercept term included
$y_i = \beta_1 x_i$	y ~ 0 + x y ~ -1 + x y ~ x - 1	Simple linear regression mode of y on x with intercept term excluded
$y_i = \beta_0$	y ~ 1 y ~ 1 - x	Simple linear regression model of y against the intercept term
$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}$	y ~ x1 + x2	Multiple linear regression mode of y on x1 and x2 with the inter cept term included implicitly
$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i1}^2$	y ~ 1 + x + I(x^2) y ~ poly(x, 2)	Second order polynomial regres sion of y on x As above, but using orthogona polynomials
$y_{ij} = \mu + \alpha_i$	y ~ A	Analysis of variance of y agains a single factor A
$y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij}$	y ~ A + B + A:B y ~ A*B	Fully factorial analysis of variance of y against A and B
$y_{ijk} = \mu + \alpha_i + \beta_j$	y ~ A*B − A:B	Fully factorial analysis of vari ance of y against A and B withou the interaction term (equivalent to A + B)
$y_{ijk} = \mu + \alpha_i + \beta_{j(i)}$	y ~ B %in% A y ~ A/B	Nested analysis of variance of y against A and B nested within A
$y_{ij} = \mu + \alpha_i + \beta(x_{ij} - \bar{x})$	y ~ A*x y ~ A/x	Analysis of covariance of y on x at each level of A
$y_{ijkl} = \mu + \alpha_i + \beta_{j(i)} + \gamma_k + \alpha_{ik} + \beta_{j(i)k}$	- y ~ A + Error(B) + C + A:C + B:C	Partly nested ANOVA of y agains a single between block factor (A) a single within block factor (C and a single random blocking fac tor (B).