Table 6.5: Statistical models in R. Lower case letters denote continuous numeric variables and uppercase letters denote factors. Note that the error term is always implicit.

Effects model	R Model formular	Description
$y_{i}=\beta_{0}+\beta_{1} x_{i}$	$y \underset{y}{\sim} \sim 1+x$	Simple linear regression model of y on x with intercept term included
$y_{i}=\beta_{1} x_{i}$	$\begin{aligned} & y \sim 0+x \\ & y \sim-1+x \\ & y \sim x-1 \end{aligned}$	Simple linear regression model of y on x with intercept term excluded
$y_{i}=\beta_{0}$	$\begin{aligned} & y \sim 1 \\ & y \\ & \sim \end{aligned}$	Simple linear regression model of y against the intercept term
$y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}$	y ~ $\mathrm{x} 1+\mathrm{x} 2$	Multiple linear regression model of y on x 1 and x 2 with the intercept term included implicitly
$y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 1}^{2}$	$\begin{aligned} & y \sim 1+x+I\left(x^{\wedge} 2\right) \\ & y \sim \operatorname{poly}(x, 2) \end{aligned}$	Second order polynomial regression of y on x As above, but using orthogonal polynomials
$y_{i j}=\mu+\alpha_{i}$	y ~ A	Analysis of variance of y against a single factor A
$y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}$	$\begin{aligned} & y \underset{\sim}{\sim} \underset{y}{\sim}+B+B \\ & \sim A: B \end{aligned}$	Fully factorial analysis of variance of y against A and B
$y_{i j k}=\mu+\alpha_{i}+\beta_{j}$	$\mathrm{Y} \sim \mathrm{A} * \mathrm{~B}-\mathrm{A}: B$	Fully factorial analysis of variance of y against A and B without the interaction term (equivalent to $\mathrm{A}+\mathrm{B})$
$y_{i j k}=\mu+\alpha_{i}+\beta_{j(i)}$	$\begin{aligned} & y \sim B \text { \%in\% } A \\ & y \sim A / B \end{aligned}$	Nested analysis of variance of y against A and B nested within A
$y_{i j}=\mu+\alpha_{i}+\beta\left(x_{i j}-\bar{x}\right)$	$\begin{aligned} & y \sim A * x \\ & y \sim A / x \end{aligned}$	Analysis of covariance of y on x at each level of A
$\begin{gathered} y_{i j k l}=\mu+\alpha_{i}+\beta_{j(i)}+\gamma_{k}+ \\ \alpha \gamma_{i k}+\beta \gamma_{j(i) k} \end{gathered}$	$\begin{aligned} & y \sim A+\operatorname{Error}(B)+ \\ & C+A: C+B: C \end{aligned}$	Partly nested ANOVA of y against a single between block factor (A), a single within block factor (C) and a single random blocking factor (B).

