
Chapter 6

Linear Statistical Models

Linear models form the core of classical statistics and are still the basis of much
of statistical practice; many modern modelling and analytical techniques build on
the methodology developed for linear models.

In S most modelling exercises are conducted in a fairly standard way. The
dataset is usually held in a single data frame object. A primary model is fitted us-
ing a model fitting function, for which a formula specifying the form of the model
and the data frame specifying the variables to be used are the basic arguments.
The resulting fitted model object can be interrogated, analysed and even modi-
fied in various ways using generic functions. The important point to note is that
the fitted model object carries with it the information that the fitting process has
revealed.

Althoughmost modelling exercises conform to this rough paradigm some fea-
tures of linear models are special. The formula for a linear model specifies the
response variable and the explanatory variables (or factors) used to model the
mean response by a version of the Wilkinson–Rogers notation (Wilkinson and
Rogers, 1973) for specifying models that we discuss in Section 6.2.

We begin with an example to give a feel for the process and to present some
of the details.

6.1 An Analysis of Covariance Example

The data frame whiteside contains a dataset collected in the 1960s byMr Derek
Whiteside of the UK Building Research Station and reported in the collection of
small datasets edited by Hand et al. (1994, No. 88, p. 69). Whiteside recorded
the weekly gas consumption and average external temperature at his own house
in south-east England during two ‘heating seasons’1 one before and one after
cavity-wall insulation was installed. The object of the exercise was to assess the
effect of the insulation on gas consumption.

The variables in data frame whiteside are Insul, a factor with levels
Before and After, Temp, for the weekly average external temperature in de-
grees Celsius and Gas, the weekly gas consumption in 1 000 cubic feet units. We
begin by plotting the data in two panels showing separate least-squares lines.

1We are grateful to Dr Kevin McConway for clarification.
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Figure 6.1: Whiteside’s data showing the effect of insulation on household gas consump-
tion.

xyplot(Gas ~ Temp | Insul, whiteside, panel =
function(x, y, ...) {
panel.xyplot(x, y, ...)
panel.lmline(x, y, ...)

}, xlab = "Average external temperature (deg. C)",
ylab = "Gas consumption (1000 cubic feet)", aspect = "xy",
strip = function(...) strip.default(..., style = 1))

The result is shown in Figure 6.1. Within the range of temperatures given a straight
line model appears to be adequate. The plot shows that insulation reduces the
gas consumption for equal external temperatures, but it also appears to affect the
slope, that is, the rate at which gas consumption increases as external temperature
falls.

To explore these issues quantitatively we will need to fit linear models, the
primary function for which is lm. The main arguments to lm are

lm(formula, data, weights, subset, na.action)

where
formula is the model formula (the only required argument),
data is an optional data frame,
weights is a vector of positive weights, if non-uniform weights are

needed,
subset is an index vector specifying a subset of the data to be used (by

default all items are used),
na.action is a function specifying how missing values are to be handled

(by default, missing values are not allowed in S-PLUS but cause cases
to be omitted in R.).R

If the argument data is specified, it gives a data frame from which variables
are selected ahead of the search path. Working with data frames and using this
argument is strongly recommended.
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It should be noted that setting na.action = na.omit will allow models to
be fitted omitting cases that have missing components on a required variable. If
any cases are omitted the fitted values and residual vector will no longer match
the original observation vector in length; use na.action = na.exclude if the
fitted values (and so on) should include NAs.

Formulae have been discussed in outline in Section 3.7 on page 56. For lm the
right-hand side specifies the explanatory variables. Operators on the right-hand
side of linear model formulae have the special meaning of the Wilkinson–Rogers
notation and not their arithmetical meaning.

To fit the separate regressions of gas consumption on temperature as shown in
Figure 6.1 we may use

gasB <- lm(Gas ~ Temp, data = whiteside, subset = Insul=="Before")
gasA <- update(gasB, subset = Insul=="After")

The first line fits a simple linear regression for the ‘before’ temperatures. The
right-hand side of the formula needs only to specify the variable Temp since an
intercept term (corresponding to a column of unities of the model matrix) is al-
ways implicitly included. It may be explicitly included using 1 + Temp, where
the + operator implies inclusion of a term in the model, not addition.

The function update is a convenientway to modify a fitted model. Its first ar-
gument is a fitted model object that results from one of the model-fitting functions
such as lm. The remaining arguments of update specify the desired changes to
arguments of the call that generated the object. In this case we simply wish to
switch subsets from Insul=="Before" to Insul=="After"; the formula and
data frame remain the same. Notice that variables used in the subset argument
may also come from the data frame and need not be visible on the (global) search
path.

Fitted model objects have an appropriate class, in this case "lm". Generic
functions to perform further operations on the object include

print for a simple display,
summary for a conventional regression analysis output,
coef (or coefficients) for extracting the regression coefficients,
resid (or residuals) for residuals,
fitted (or fitted.values) for fitted values,
deviance for the residual sum of squares,
anova for a sequential analysis of variance table, or a comparison of sev-

eral hierarchical models,
predict for predicting means for new data, optionally with standard er-

rors, and
plot for diagnostic plots.

Many of these method functions are very simple, merely extracting a component
of the fitted model object. The only component likely to be accessed for which no
extractor function is supplied2 is df.residual, the residual degrees of freedom.

2In S-PLUS: there is a df.residual function in R.
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The output from summary is self-explanatory. Edited results for our fitted
models are

> summary(gasB)
....

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 6.854 0.118 57.876 0.000
Temp -0.393 0.020 -20.078 0.000

Residual standard error: 0.281 on 24 degrees of freedom

> summary(gasA)
....

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 4.724 0.130 36.410 0.000
Temp -0.278 0.025 -11.036 0.000

Residual standard error: 0.355 on 28 degrees of freedom

The difference in residual variances is relatively small, but the formal textbook
F -test for equality of variances could easily be done. The sample variances could
be extracted in at least two ways, for example

varB <- deviance(gasB)/gasB$df.resid # direct calculation
varB <- summary(gasB)$sigma^2 # alternative

It is known this F -test is highly non-robust to non-normality (see, for example,
Hampel et al. (1986, pp. 55, 188)) so its usefulness here would be doubtful.

To fit both regression models in the same "lm" model object we may use
> gasBA <- lm(Gas ~ Insul/Temp - 1, data = whiteside)
> summary(gasBA)

....
Coefficients:

Value Std. Error t value Pr(>|t|)
InsulBefore 6.854 0.136 50.409 0.000
InsulAfter 4.724 0.118 40.000 0.000

InsulBeforeTemp -0.393 0.022 -17.487 0.000
InsulAfterTemp -0.278 0.023 -12.124 0.000

Residual standard error: 0.323 on 52 degrees of freedom
....

Notice that the estimates are the same but the standard errors are different because
they are now based on the pooled estimate of variance.

Terms of the form a/x, where a is a factor, are best thought of as “separate
regression models of type 1 + x within the levels of a .” In this case an intercept
is not needed, since it is replaced by two separate intercepts for the two levels of
insulation, and the formula term - 1 removes it.

We can check for curvature in the mean function by fitting separate quadratic
rather than linear regressions in the two groups. This may be done as
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> gasQ <- lm(Gas ~ Insul/(Temp + I(Temp^2)) - 1, data = whiteside)
> summary(gasQ)$coef

Value Std. Error t value Pr(>|t|)
InsulBefore 6.7592152 0.1507868 44.8263 0.0000e+00
InsulAfter 4.4963739 0.1606679 27.9855 0.0000e+00

InsulBeforeTemp -0.3176587 0.0629652 -5.0450 6.3623e-06
InsulAfterTemp -0.1379016 0.0730580 -1.8876 6.4896e-02

InsulBeforeI(Temp^2) -0.0084726 0.0066247 -1.2789 2.0683e-01
InsulAfterI(Temp^2) -0.0149795 0.0074471 -2.0114 4.9684e-02

The ‘identity’ function I(...) is used in this context and with data.frame
(see page 18). It evaluates its argument with operators having their arithmetical
meaning and returns the result. Hence it allows arithmetical operators to be used
in linear model formulae, although if any function call is used in a formula their
arguments are evaluated in this way.

The separate regression coefficients show that a second-degree term is possi-
bly needed for the After group only, but the evidence is not overwhelming.3 We
retain the separate linear regressions model on the grounds of simplicity.

An even simpler model that might be considered is one with parallel regres-
sions. We can fit this model and test it within the separate regression model using

> # R: options(contrasts = c("contr.helmert", "contr.poly"))
> gasPR <- lm(Gas ~ Insul + Temp, data = whiteside)
> anova(gasPR, gasBA)
Analysis of Variance Table

....
Terms Resid. Df RSS Test Df Sum of Sq F Value

1 Insul + Temp 53 6.7704
2 Insul/Temp - 1 52 5.4252 1 vs. 2 1 1.3451 12.893

Pr(F)
1
2 0.00073069

When anova is used with two or more nested models it gives an analysis of
variance table for those models. In this case it shows that separate slopes are
indeed necessary. Note the unusual layout of the analysis of variance table. Here
we could conduct this test in a simpler and more informative way. We now fit the
model with separate slopes using a different parametrization:

> options(contrasts = c("contr.treatment", "contr.poly"))
> gasBA1 <- lm(Gas ~ Insul*Temp, data = whiteside)
> summary(gasBA1)$coef

Value Std. Error t value Pr(>|t|)
(Intercept) 6.85383 0.135964 50.4091 0.0000e+00

Insul -2.12998 0.180092 -11.8272 2.2204e-16
Temp -0.39324 0.022487 -17.4874 0.0000e+00

Insul:Temp 0.11530 0.032112 3.5907 7.3069e-04

3Notice that when the quadratic terms are present first-degree coefficients mean ‘the slope of the
curve at temperature zero’, so a non-significant value does not mean that the linear term is not needed.
Removing the non-significant linear term for the ‘after’ group, for example, would be unjustified.
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The call to options is explained more fully in Section 6.2; for now we note that
it affects the way regression models are parametrized when factors are used. The
formula Insul*Temp expands to 1 + Insul + Temp + Insul:Temp and the
corresponding coefficients are, in order, the intercept for the ‘before’ group, the
difference in intercepts, the slope for the ‘before’ group and the difference in
slopes. Since this last term is significant we conclude that the two separate slopes
are required in the model. Indeed note that the F -statistic in the analysis of vari-
ance table is the square of the final t-statistic and that the tail areas are identical.

6.2 Model Formulae and Model Matrices

This section contains some rather technical material and might be skimmed at first
reading.

A linear model is specified by the response vector y and by the matrix of
explanatory variables, or model matrix, X . The model formula conveys both
pieces of information, the left-hand side providing the response and the right-hand
side instructions on how to generate the model matrix according to a particular
convention.

A multiple regression with three quantitative determining variables might be
specified as y ~ x1 + x2 + x3. This would correspond to a model with a fa-
miliar algebraic specification

yi = β0 + β1xi1 + β2xi2 + β3xi3 + ϵi, i = 1, 2, . . . , n

The model matrix has the partitioned form

X =
[
1 x1 x2 x3

]

The intercept term (β0 corresponding to the leading column of ones in X) is
implicitly present; its presence may be confirmed by giving a formula such as
y ~ 1 + x1 + x2 + x3, but wherever the 1 occurs in the formula the column
of ones will always be the first column of the model matrix. It may be omitted
and a regression through the origin fitted by giving a - 1 term in the formula, as
in y ~ x1 + x2 + x3 - 1.

Factor terms in a model formula are used to specify classifications leading to
what are often called analysis of variance models. Suppose a is a factor. An
analysis of variance model for the one-way layout defined by a might be written
in the algebraic form

yij = µ + αj + ϵij i = 1, 2, . . . , nj; j = 1, 2, . . . , k

where there are k classes and the nj is the size of the jth. Let n =
∑

j nj .
This specification is over-parametrized, but we could write the model matrix in
the form

X =
[
1 Xa

]

where Xa is an n×k binary incidence (or ‘dummy variable’) matrix where each
row has a single unity in the column of the class to which it belongs.
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The redundancy comes from the fact that the columns of Xa add to 1, making
X of rank k rather than k + 1. One way to resolve the redundancy is to remove
the column of ones. This amounts to setting µ = 0, leading to an algebraic
specification of the form

yij = αj + ϵij i = 1, 2, . . . , nj; j = 1, 2, . . . , k

so the αj parameters are the class means. This formulation may be specified by
y ~ a - 1.

If we do not break the redundancy by removing the intercept term it must be
done some other way, since otherwise the parameters are not identifiable. The
way this is done in S is most easily described in terms of the model matrix. The
model matrix generated has the form

X⋆ =
[
1 XaCa

]

where Ca, the contrast matrix for a, is a k × (k − 1) matrix chosen so that X⋆

has rank k, the number of columns. A necessary (and usually sufficient) condition
for this to be the case is that the square matrix [1Ca] be non-singular.

The reduced model matrix X⋆ in turn defines a linear model, but the parame-
ters are often not directly interpretable and an algebraic formulation of the precise
model may be difficult to write down. Nevertheless, the relationship between the
newly defined and original (redundant) parameters is clearly given by

α = Caα
⋆ (6.1)

where α are the original α parameters and α⋆ are the new.
If ca is a non-zero vector such that cT

a Ca = 0 it can be seen immediately
that using α⋆ as parameters amounts to estimating the original parameters, α
subject to the identification constraint cT

a α = 0 which is usually sufficient to
make them unique. Such a vector (or matrix) ca is called an annihilator of Ca

or a basis for the orthogonal complement of the range of Ca.
If we fit the one-way layout model using the formula

y ~ a

the coefficients we obtain will be estimates of µ and α⋆. The corresponding
constrained estimates of the α may be obtained by multiplying by the contrasts
matrix or by using the function dummy.coef. Consider an artificial example:

> dat <- data.frame(a = factor(rep(1:3, 3)),
y = rnorm(9, rep(2:4, 3), 0.1))

> obj <- lm(y ~ a, dat)
> (alf.star <- coef(obj))
(Intercept) a1 a2

2.9719 0.51452 0.49808
> Ca <- contrasts(dat$a) # contrast matrix for ‘a’
> drop(Ca %*% alf.star[-1])

1 2 3
-1.0126 0.016443 0.99615
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> dummy.coef(obj)
$"(Intercept)":
[1] 2.9719

$a:
1 2 3

-1.0126 0.016443 0.99615

Notice that the estimates of α sum to zero because the contrast matrix used here
implies the identification constraint 1T α = 0.

Contrast matrices

By defaultS-PLUS uses so-calledHelmert contrast matrices for unordered factorsS+
and orthogonal polynomial contrast matrices for ordered factors. The forms of
these can be deduced from the following artificial example:

> N <- factor(Nlevs <- c(0,1,2,4))
> contrasts(N)

[,1] [,2] [,3]
0 -1 -1 -1
1 1 -1 -1
2 0 2 -1
4 0 0 3
> contrasts(ordered(N))

.L .Q .C
0 -0.67082 0.5 -0.22361
1 -0.22361 -0.5 0.67082
2 0.22361 -0.5 -0.67082
4 0.67082 0.5 0.22361

For the poly contrasts it can be seen that the corresponding parameters α⋆ can
be interpreted as the coefficients in an orthogonal polynomial model of degree
r − 1, provided the ordered levels are equally spaced (which is not the case for
the example) and the class sizes are equal. The α⋆ parameters corresponding to
the Helmert contrasts also have an easy interpretation, as we see in the following.
Since both the Helmert and polynomial contrast matrices satisfy 1T C = 0 , the
implied constraint on α will be 1T α = 0 in both cases.

The default contrast matrices can be changed by resetting the contrasts
option. This is a character vector of length two giving the names of the functions
that generate the contrast matrices for unordered and ordered factors respectively.
For example,

options(contrasts = c("contr.treatment", "contr.poly"))

sets the default contrast matrix function for factors to contr.treatment and for
ordered factors to contr.poly (the original default). (This is the default in R.)R
Four supplied contrast functions are as follows:

contr.helmert for the Helmert contrasts.



6.2 Model Formulae and Model Matrices 147

contr.treatment for contrasts such that each coefficient represents a comparison of
that level with level 1 (omitting level 1 itself). This corresponds to the constraint
α1 = 0. Note that in this parametrization the coefficients are not contrasts in the
usual sense.

contr.sum where the coefficients are constrained to add to zero; that is, in this case the
components of α⋆ are the same as the first r− 1 components of α, with the latter
constrained to add to zero.

contr.poly for the equally spaced, equally replicated orthogonal polynomial contrasts.

Others can be written using these as templates (as we do with our function
contr.sdif , used on pages 293 and 294). We recommend the use of the treat-
ment contrasts for unbalanced layouts, including generalized linear models and
survival models, because the unconstrained coefficients obtained directly from
the fit are then easy to interpret.

Notice that the helmert, sum and poly contrasts ensure the rank condition
on C is met by choosing C so that the columns of [1C ] are mutually orthog-
onal, whereas the treatment contrasts choose C so that [1C ] is in echelon
form.

Contrast matrices for particular factors may also be set as an attribute of the
factor itself. This can be done either by the contrasts replacement function
or by using the function C which takes three arguments: the factor, the matrix
from which contrasts are to be taken (or the abbreviated name of a function that
will generate such a matrix) and the number of contrasts. On some occasions a
p-level factor may be given a contrast matrix with fewer than p − 1 columns, in
which case it contributes fewer than p−1 degrees of freedom to the model, or the
unreduced parameters α have additional constraints placed on them apart from
the one needed for identification. An alternative method is to use the replacement
form with a specific number of contrasts as the second argument. For example,
suppose we wish to create a factor N2 that would generate orthogonal linear and
quadratic polynomial terms, only. Two equivalent ways of doing this would be

> N2 <- N
> contrasts(N2, 2) <- poly(Nlevs, 2)
> N2 <- C(N, poly(Nlevs, 2), 2) # alternative
> contrasts(N2)

1 2
0 -0.591608 0.56408
1 -0.253546 -0.32233
2 0.084515 -0.64466
4 0.760639 0.40291

In this case the constraints imposed on the α parameters are not merely for iden-
tification but actually change the model subspace.

Parameter interpretation

The poly contrast matrices lead to α⋆ parameters that are sometimes inter-
pretable as coefficients in an orthogonal polynomial regression. The treatment
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contrasts set α1 = 0 and choose the remaining αs as the α⋆s. Other cases are
often not so direct, but an interpretation is possible.

To interpret the α⋆ parameters in general, consider the relationship (6.1).
Since the contrast matrix C is of full column rank it has a unique left inverse
C+, so we can reverse this relationship to give

α⋆ = C+α where C+ = (CT C)−1CT (6.2)

The pattern in the matrix C+ then provides an interpretation of each uncon-
strained parameter as a linear function of the (usually) readily appreciated con-
strained parameters. For example, consider the Helmert contrasts for r = 4. To
exhibit the pattern in C+ more clearly we use the function fractions from
MASS for rational approximation and display.

> fractions(ginv(contr.helmert(n = 4)))
[,1] [,2] [,3] [,4]

[1,] -1/2 1/2 0 0
[2,] -1/6 -1/6 1/3 0
[3,] -1/12 -1/12 -1/12 1/4

Hence α⋆
1 = 1

2 (α2 − α1), α⋆
2 = 1

3{α3 − 1
2 (α1 + α2)} and in general α⋆

j is
a comparison of αj+1 with the average of all preceding αs, divided by j + 1.
This is a comparison of the (unweighted) mean of class j + 1 with that of the
preceding classes.

It can sometimes be important to use contrast matrices that give a simple inter-
pretation to the fitted coefficients. This can be done by noting that (C+)+ = C.
For example, suppose we wished to choose contrasts so that the α⋆

j = αj+1−αj ,
that is, the successive differences of class effects. For r = 5, say, the C+ matrix
is then given by

> Cp <- diag(-1, 4, 5); Cp[row(Cp) == col(Cp) - 1] <- 1
> Cp

[,1] [,2] [,3] [,4] [,5]
[1,] -1 1 0 0 0
[2,] 0 -1 1 0 0
[3,] 0 0 -1 1 0
[4,] 0 0 0 -1 1

Hence the contrast matrix to obtain these linear functions as the estimated coeffi-
cients is

> fractions(ginv(Cp))
[,1] [,2] [,3] [,4]

[1,] -4/5 -3/5 -2/5 -1/5
[2,] 1/5 -3/5 -2/5 -1/5
[3,] 1/5 2/5 -2/5 -1/5
[4,] 1/5 2/5 3/5 -1/5
[5,] 1/5 2/5 3/5 4/5

Note that again the columns have zero sums, so the implied constraint is that the
effects add to zero. (If it were not obvious we could find the induced constraint
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using our function Null (page 63) to find a basis for the null space of the contrast
matrix.)

The pattern is obvious from this example and a contrast matrix function for the
general case can now be written. To be usable as a component of the contrasts
option such a function has to conform with a fairly strict convention, but the key
computational steps are

....
contr <- col(matrix(nrow = n, ncol = n - 1))
upper.tri <- !lower.tri(contr)
contr[upper.tri] <- contr[upper.tri] - n
contr/n

....

The complete function is supplied as contr.sdif in MASS. We make use of it
on pages 293 and 294.

Higher-way layouts
Two- and higher-way layouts may be specified by two or more factors and formula
operators. The way the model matrix is generated is then an extension of the
conventions for a one-way layout.

If a and b are r- and s-level factors, respectively, the model formula
y ~ a+b specifies an additivemodel for the two-way layout. Using the redundant
specification the algebraic formulation would be

yijk = µ + αi + βj + ϵijk

and the model matrix would be

X =
[
1 Xa Xb

]

The reduced model matrix then has the form

X⋆ =
[
1 XaCa XbCb

]

However, if the intercept term is explicitly removed using, say, y ~ a + b - 1,
the reduced form is

X⋆ =
[
Xa XbCb

]

Note that this is asymmetric in a and b and order-dependent.
A two-way non-additive model has a redundant specification of the form

yijk = µ + αi + βj + γij + ϵijk

The model matrix can be written as

X =
[
1 Xa Xb Xa:Xb

]

where we use the notation A:B to denote the matrix obtained by taking each col-
umn of A and multiplying it element-wise by each column of B. In the example
Xa:Xb generates an incidence matrix for the sub-classes defined jointly by a and
b. Such a model may be specified by the formula
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y ~ a + b + a:b

or equivalently by y ~ a*b. The reduced form of the model matrix is then

X⋆ =
[
1 XaCa XbCb (XaCa):(XbCb)

]

It may be seen that (XaCa):(XbCb) = (Xa:Xb)(Cb ⊗ Ca), where ⊗ denotes
the Kronecker product, so the relationship between the γ parameters and the
corresponding γ⋆s is

γ = (Cb ⊗ Ca)γ⋆

The identification constraints can be most easily specified by writing γ as an
r × s matrix. If this is done, the relationship has the form γ = Caγ⋆CT

b and the
constraints have the form cT

a γ = 0T and γcb = 0, separately.
If the intercept term is removed, however, such as by using y ~ a*b - 1 ,

the form is different, namely,

X⋆ =
[
Xa XbCb X(−r)

a :(XbCb)
]

where (somewhat confusingly) X(−r)
a is a matrix obtained by removing the last

column of Xa. Furthermore, if a model is specified as y ~ - 1 + a + a:b
the model matrix generated is

[
Xa Xa:(XbCb)

]
. In general addition of a term

a:b extends the previously constructed design matrix to a complete non-additive
model in some non-redundant way (unless the design is deficient, of course).

Even though a*b expands to a + b + a:b, it should be noted that a + a:b
is not always the same4 as a*b - b or even a + b - b + a:b. When used in
model-fitting functions the last two formulae construct the design matrix for a*b
and only then remove any columns corresponding to the b term. (The result
is not a statistically meaningful model.) Model matrices are constructed within
the fitting functions by arranging the positive terms in order of their complexity,
sequentially adding columns to the model matrix according to the redundancy res-
olution rules and then removing any generated columns corresponding to negative
terms. The exception to this rule is the intercept term which is always removed
initially. (With update, however, the formula is expanded and all negative terms
are removed before the model matrix is constructed.)

The model a + a:b generates the same matrix as a/b, which expands in
S-PLUS to a + b %in% a. There is no compelling reason for the additional
operator,5 %in%, but it does serve to emphasize that the slash operator should be
thought of as specifying separate submodels of the form 1 + b for each level of
a. The operator behaves like the colon formula operator when the second main
effect term is not given, but is conventionally reserved for nested models.

Star products of more than two terms, such as a*b*c, may be thought of as
expanding (1 + a):(1 + b):(1 + c) according to ordinary algebraic rules
and may be used to define higher-way non-additive layouts. There is also a power
operator, ^ , for generating models up to a specified degree of interaction term.

4In S-PLUS: it is always the same in R.
5Which R does not have.
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For example, (a+b+c)^3 generates the same model as a*b*c but (a+b+c)^2
has the highest order interaction absent.

Combinations of factors and non-factors with formula operators are useful in
an obvious way. We have seen already that a/x - 1 generates separate simple
linear regressions on x within the levels of a. The same model may be specified
as a + a:x - 1, whereas a*x generates an equivalent model using a different
resolution of the redundancy. It should be noted that (x + y + z)^3 does not
generate a general third-degree polynomial regression in the three variables, as
might be expected. This is because terms of the form x:x are regarded as the
same as x, not as I(x^2). However, in S-PLUS a single term such as x^2 is S+
silently promoted to I(x^2) and interpreted as a power.

6.3 Regression Diagnostics

The message in the Whiteside example is relatively easy to discover and we did
not have to work hard to find an adequate linear model. There is an extensive
literature (for example Atkinson, 1985) on examining the fit of linear models to
consider whether one or more points are not fitted as well as they should be or
have undue influence on the fitting of the model. This can be contrasted with the
robust regression methods we discuss in Section 6.5, which automatically take
account of anomalous points.

The basic tool for examining the fit is the residuals, and we have already
looked for patterns in residuals and assessed the normality of their distribution.
The residuals are not independent (they sum to zero if an intercept is present) and
they do not have the same variance. Indeed, their variance-covariancematrix is

var
(
e
)

= σ2[I −H ] (6.3)

where H = X(XT X)−1XT is the orthogonal projector matrix onto the model
space, or hat matrix. If a diagonal entry hii of H is large, changing yi will
move the fitted surface appreciably towards the altered value. For this reason hii

is said to measure the leverage of the observation yi. The trace of H is p, the
dimension of the model space, so ‘large’ is taken to be greater than two or three
times the average, p/n.

Having large leverage has two consequences for the corresponding residual.
First, its variance will be lower than average from (6.3). We can compensate for
this by rescaling the residuals to have unit variance. The standardized residuals
are

e′i =
ei

s
√

1− hii

where as usual we have estimated σ2 by s2, the residual mean square. Second,
if one error is very large, the variance estimate s2 will be too large, and this
deflates all the standardized residuals. Let us consider fitting the model omitting
observation i. We then get a prediction for the omitted observation, ŷ(i), and an
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estimate of the error variance, s2
(i), from the reduced sample. The studentized

residuals are
e∗i =

yi − ŷ(i)√
var
(
yi − ŷ(i)

)

but with σ replaced by s(i). Fortunately, it is not necessary to re-fit the model
each time an observation is omitted, since it can be shown that

e∗i = e′i

/ [n− p− e′2i
n− p− 1

]1/2

Notice that this implies that the standardized residuals, ei, must be bounded by
±
√

n− p.
The terminology used here is not universally adopted; in particular studentized

residuals are sometimes called jackknifed residuals.
It is usually better to compare studentized residuals rather than residuals; in

particular we recommend that they be used for normal probability plots.
We have provided functions studres and stdres to compute studentized

and standardized residuals. There is a function hat, but this expects the model
matrix as its argument. (There is a useful function, lm.influence, for most of
the fundamental calculations. The diagonal of the hat matrix can be obtained by
lm.influence(lmobject)$hat.)

Scottish hill races
As an example of regression diagnostics, let us return to the data on 35 Scottish
hill races in our data frame hills considered in Chapter 1. The data come
from Atkinson (1986) and are discussed further in Atkinson (1988) and Staudte
and Sheather (1990). The columns are the overall race distance, the total height
climbed and the record time. In Chapter 1 we considered a regression of time
on dist. We can now include climb :

> (hills.lm <- lm(time ~ dist + climb, data = hills))
Coefficients:
(Intercept) dist climb

-8.992 6.218 0.011048

Degrees of freedom: 35 total; 32 residual
Residual standard error: 14.676
> frame(); par(fig = c(0, 0.6, 0, 0.55))
> plot(fitted(hills.lm), studres(hills.lm))
> abline(h = 0, lty = 2)
> identify(fitted(hills.lm), studres(hills.lm),

row.names(hills))
> par(fig = c(0.6, 1, 0, 0.55), pty = "s")
> qqnorm(studres(hills.lm))
> qqline(studres(hills.lm))
> hills.hat <- lm.influence(hills.lm)$hat
> cbind(hills, lev = hills.hat)[hills.hat > 3/35, ]
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Figure 6.2: Diagnostic plots for Scottish hills data, unweighted model.

dist climb time lev
Bens of Jura 16 7500 204.617 0.42043
Lairig Ghru 28 2100 192.667 0.68982
Ben Nevis 10 4400 85.583 0.12158

Two Breweries 18 5200 170.250 0.17158
Moffat Chase 20 5000 159.833 0.19099

so two points have very high leverage, two points have large residuals, and Bens
of Jura is in both sets. (See Figure 6.2.)

If we look at Knock Hill we see that the prediction is over an hour less than
the reported record:

> cbind(hills, pred = predict(hills.lm))["Knock Hill", ]
dist climb time pred

Knock Hill 3 350 78.65 13.529

and Atkinson (1988) suggests that the record is one hour out. We drop this obser-
vation to be safe:

> (hills1.lm <- update(hills.lm, subset = -18))
Coefficients:
(Intercept) dist climb

-13.53 6.3646 0.011855

Degrees of freedom: 34 total; 31 residual
Residual standard error: 8.8035

Since Knock Hill did not have a high leverage, deleting it did not change the
fitted model greatly. On the other hand, Bens of Jura had both a high leverage
and a large residual and so does affect the fit:

> update(hills.lm, subset = -c(7, 18))
Coefficients:
(Intercept) dist climb

-10.362 6.6921 0.0080468

Degrees of freedom: 33 total; 30 residual
Residual standard error: 6.0538
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If we consider this example carefully we find a number of unsatisfactory fea-
tures. First, the prediction is negative for short races. Extrapolation is often un-
safe, but on physical grounds we would expect the model to be a good fit with a
zero intercept; indeed hill-walkers use a prediction of this sort (3 miles/hour plus
20 minutes per 1 000 feet). We can see from the summary that the intercept is
significantly negative:

> summary(hills1.lm)
....

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -13.530 2.649 -5.108 0.000
dist 6.365 0.361 17.624 0.000
climb 0.012 0.001 9.600 0.000

....

Furthermore, we would not expect the predictions of times that range from
15 minutes to over 3 hours to be equally accurate, but rather that the accuracy be
roughly proportional to the time. This suggests a log transform, but that would be
hard to interpret. Rather we weight the fit using distance as a surrogate for time.
We want weights inversely proportional to the variance:

> summary(update(hills1.lm, weights = 1/dist^2))
....

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) -5.809 2.034 -2.855 0.008
dist 5.821 0.536 10.858 0.000
climb 0.009 0.002 5.873 0.000

Residual standard error: 1.16 on 31 degrees of freedom

The intercept is still significantly non-zero. If we are prepared to set it to zero
on physical grounds, we can achieve the same effect by dividing the prediction
equation by distance, and regressing inverse speed (time/distance) on gradient
(climb/distance):

> lm(time ~ -1 + dist + climb, hills[-18, ], weights = 1/dist^2)
Coefficients:
dist climb
4.9 0.0084718

Degrees of freedom: 34 total; 32 residual
Residual standard error (on weighted scale): 1.2786
> hills <- hills # make a local copy (needed in S-PLUS)
> hills$ispeed <- hills$time/hills$dist
> hills$grad <- hills$climb/hills$dist
> (hills2.lm <- lm(ispeed ~ grad, data = hills[-18, ]))
Coefficients:
(Intercept) grad

4.9 0.0084718
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Figure 6.3: Diagnostic plots for Scottish hills data, weighted model.

Degrees of freedom: 34 total; 32 residual
Residual standard error: 1.2786
> frame(); par(fig = c(0, 0.6, 0, 0.55))
> plot(hills$grad[-18], studres(hills2.lm), xlab = "grad")
> abline(h = 0, lty = 2)
> identify(hills$grad[-18], studres(hills2.lm),

row.names(hills)[-18])
> par(fig = c(0.6, 1, 0, 0.55), pty = "s") # Figure 6.3
> qqnorm(studres(hills2.lm))
> qqline(studres(hills2.lm))
> hills2.hat <- lm.influence(hills2.lm)$hat
> cbind(hills[-18,], lev = hills2.hat)[hills2.hat > 1.8*2/34, ]

dist climb time ispeed grad lev
Bens of Jura 16 7500 204.617 12.7886 468.75 0.11354

Creag Dubh 4 2000 26.217 6.5542 500.00 0.13915

The two highest-leverage cases are now the steepest two races, and are outliers
pulling in opposite directions. We could consider elaborating the model, but this
would be to fit only one or two exceptional points; for most of the data we have
the formula of 5 minutes/mile plus 8 minutes per 1 000 feet. We return to this
example on page 162 where robust fits do support a zero intercept.

6.4 Safe Prediction

A warning is needed on the use of the predict method function when polyno-
mials are used (and also splines, see Section 8.8). We illustrate this by the dataset
wtloss, for which a more appropriate analysis is given in Chapter 8. This has a
weight loss Weight against Days. Consider a quadratic polynomial regression
model of Weight on Days. This may be fitted by either of

quad1 <- lm(Weight ~ Days + I(Days^2), data = wtloss)
quad2 <- lm(Weight ~ poly(Days, 2), data = wtloss)
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The second uses orthogonal polynomials and is the preferred form on grounds of
numerical stability.

Suppose we wished to predict future weight loss. The first step is to create a
new data frame with a variable x containing the new values, for example,

new.x <- data.frame(Days = seq(250, 300, 10),
row.names = seq(250, 300, 10))

The predict method may now be used:

> predict(quad1, newdata = new.x)
250 260 270 280 290 300

112.51 111.47 110.58 109.83 109.21 108.74
> predict(quad2, newdata = new.x) # from S-PLUS 6.0

250 260 270 280 290 300
244.56 192.78 149.14 113.64 86.29 67.081

The first form gives correct answers but the second does not in S-PLUS!
The reason for this is as follows. The predict method for lm objects works

by attaching the estimated coefficients to a new model matrix that it constructs
using the formula and the new data. In the first case the procedure will work, but
in the second case the columns of the model matrix are for a different orthogonal
polynomial basis, and so the old coefficients do not apply. The same will hold
for any function used to define the model that generates mathematically different
bases for old and new data, such as spline bases using bs or ns. R retains enoughR
information to predict from the old data.

The remedy in S-PLUS is to use the method function predict.gam :S+

> predict.gam(quad2, newdata = new.x) # S-PLUS only
250 260 270 280 290 300

112.51 111.47 110.58 109.83 109.21 108.74

This constructs a new model matrix by putting old and new data together, re-
estimates the regression using the old data only and predicts using these estimates
of regression coefficients. This can involve appreciable extra computation, but
the results will be correct for polynomials, but not exactly so for splines since the
knot positions will change. As a check, predict.gam compares the predictions
with the old fitted values for the original data. If these are seriously different, a
warning is issued that the process has probably failed.

In our view this is a serious flaw in predict.lm. It would have been better to
use the safe method as the default and provide an unsafe argument for the faster
method as an option.

6.5 Robust and Resistant Regression

There are a number of ways to perform robust regression in S-PLUS, but
many have drawbacks and are not mentioned here. First consider an example.
Rousseeuw and Leroy (1987) give data on annual numbers of Belgian telephone
calls, given in our dataset phones.
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Figure 6.4: Millions of phone calls in Belgium, 1950–73, from Rousseeuw and Leroy
(1987), with three fitted lines.

# R: library(lqs)
phones.lm <- lm(calls ~ year, data = phones)
attach(phones); plot(year, calls); detach()
abline(phones.lm$coef)
abline(rlm(calls ~ year, phones, maxit=50), lty = 2, col = 2)
abline(lqs(calls ~ year, phones), lty = 3, col = 3)
legend(locator(1), lty = 1:3, col = 1:3,

legend = c("least squares", "M-estimate", "LTS"))

Figure 6.4 shows the least squares line, an M-estimated regression and the least
trimmed squares regression (Section 6.5). The lqs line is −56.16 + 1.16 year .
Rousseeuw & Leroy’s investigations showed that for 1964–9 the total length of
calls (in minutes) had been recorded rather than the number, with each system
being used during parts of 1963 and 1970.

Next some theory. In a regression problem there are two possible sources
of errors, the observations yi and the corresponding row vector of p regressors
xi. Most robust methods in regression only consider the first, and in some cases
(designed experiments?) errors in the regressors can be ignored. This is the case
for M-estimators, the only ones we consider in this section.

Consider a regression problem with n cases (yi, xi) from the model

y = xβ + ϵ

for a p-variate row vector x.
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M-estimators

If we assume a scaled pdf f(e/s)/s for ϵ and set ρ = − log f , the maximum
likelihood estimator minimizes

n∑

i=1

ρ

(
yi − xib

s

)
+ n log s (6.4)

Suppose for now that s is known. Let ψ = ρ′. Then the MLE b of β solves

n∑

i=1

xiψ

(
yi − xib

s

)
= 0 (6.5)

Let ri = yi − xib denote the residuals.
The solution to equation (6.5) or to minimizing over (6.4) can be used to define

an M-estimator of β.
A common way to solve (6.5) is by iterated re-weighted least squares, with

weights

wi = ψ

(
yi − xib

s

)/(
yi − xib

s

)
(6.6)

The iteration is guaranteed to converge only for convex ρ functions, and for re-
descending functions (such as those of Tukey and Hampel; page 123) equation
(6.5) may have multiple roots. In such cases it is usual to choose a good starting
point and iterate carefully.

Of course, in practice the scale s is not known. A simple and very resistant
scale estimator is the MAD about some centre. This is applied to the residuals
about zero, either to the current residuals within the loop or to the residuals from
a very resistant fit (see the next subsection).

Alternatively, we can estimate s in an MLE-like way. Finding a stationary
point of (6.4) with respect to s gives

∑

i

ψ

(
yi − xib

s

)(
yi − xib

s

)
= n

which is not resistant (and is biased at the normal). As in the univariate case we
modify this to

∑

i

χ

(
yi − xib

s

)
= (n− p)γ (6.7)

Our function rlm

Our MASS library section introduces a new class rlm and model-fitting function
rlm, building on lm. The syntax in general follows lm. By default Huber’s M-
estimator is used with tuning parameter c = 1.345. By default the scale s is
estimated by iterated MAD, but Huber’s proposal 2 can also be used.
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> summary(lm(calls ~ year, data = phones), cor = F)
Value Std. Error t value Pr(>|t|)

(Intercept) -260.059 102.607 -2.535 0.019
year 5.041 1.658 3.041 0.006

Residual standard error: 56.2 on 22 degrees of freedom
> summary(rlm(calls ~ year, maxit = 50, data = phones), cor = F)

Value Std. Error t value
(Intercept) -102.622 26.608 -3.857

year 2.041 0.430 4.748
Residual standard error: 9.03 on 22 degrees of freedom
> summary(rlm(calls ~ year, scale.est = "proposal 2",

data = phones), cor = F)
Coefficients:

Value Std. Error t value
(Intercept) -227.925 101.874 -2.237

year 4.453 1.646 2.705
Residual standard error: 57.3 on 22 degrees of freedom

As Figure 6.4 shows, in this example there is a batch of outliers from a different
population in the late 1960s, and these should be rejected completely, which the
Huber M-estimators do not. Let us try a re-descending estimator.

> summary(rlm(calls ~ year, data = phones, psi = psi.bisquare),
cor = F)

Coefficients:
Value Std. Error t value

(Intercept) -52.302 2.753 -18.999
year 1.098 0.044 24.685

Residual standard error: 1.65 on 22 degrees of freedom

This happened to work well for the default least-squares start, but we might want
to consider a better starting point, such as that given by init = "lts".

Resistant regression
M-estimators are not very resistant to outliers unless they have redescending ψ
functions, in which case they need a good starting point. A succession of more
resistant regression estimators was defined in the 1980s. The first to become
popular was

min
b
median

i
|yi − xib|2

called the least median of squares (LMS) estimator. The square is necessary if n
is even, when the central median is taken. This fit is very resistant, and needs no
scale estimate. It is, however, very inefficient, converging at rate 1/ 3

√
n. Further-

more, it displays marked sensitivity to central data values; see Hettmansperger
and Sheather (1992) and Davies (1993, §2.3).

Rousseeuw suggested least trimmed squares (LTS) regression:

min
b

q∑

i=1

|yi − xib|2(i)
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as this is more efficient, but shares the same extreme resistance. The recom-
mended sum is over the smallest q = ⌊(n+p+1)/2⌋ squared residuals. (Earlier
accounts differed.)

This was followed by S-estimation, in which the coefficients are chosen to
find the solution to

n∑

i=1

χ
(yi − xib

c0 s

)
= (n− p)β

with smallest scale s. Here χ is usually chosen to be the integral of Tukey’s
bisquare function

χ(u) = u6 − 3u4 + 3u2, |u| ! 1, 1, |u| " 1

c0 = 1.548 and β = 0.5 is chosen for consistency at the normal distribution of
errors. This gives efficiency 28.7% at the normal, which is low but better than
LMS and LTS.

In only a few special cases (such as LMS for univariate regression with inter-
cept) can these optimization problems be solved exactly, and approximate search
methods are used.

S implementation
Various versions of S-PLUS have (different) implementations of LMS and LTS
regression in functions lmsreg and ltsreg6, but as these are not fully doc-
umented and give different results in different releases, we prefer our function
lqs.7 The default method is LTS.

> lqs(calls ~ year, data = phones)
Coefficients:
(Intercept) year
-56.2 1.16

Scale estimates 1.25 1.13

> lqs(calls ~ year, data = phones, method = "lms")
Coefficients:
(Intercept) year
-55.9 1.15

Scale estimates 0.938 0.909

> lqs(calls ~ year, data = phones, method = "S")
Coefficients:
(Intercept) year
-52.5 1.1

Scale estimates 2.13

Two scale estimates are given for LMS and LTS: the first comes from the fit
criterion, the second from the variance of the residuals of magnitude no more
than 2.5 times the first scale estimate. All the scale estimates are set up to be

6In S-PLUS this now uses 10% trimming.
7Adopted by R in its package lqs .
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consistent at the normal, but measure different things for highly non-normal data
(as here).

MM-estimation

It is possible to combine the resistance of these methods with the efficiency of M-
estimation. The MM-estimator proposed by Yohai, Stahel and Zamar (1991) (see
also Marazzi, 1993, §9.1.3) is an M-estimator starting at the coefficients given by
the S-estimator and with fixed scale given by the S-estimator. This retains (for
c > c0 ) the high-breakdown point of the S-estimator and the high efficiency at
the normal. At considerable computational expense, this gives the best of both
worlds.

Our function rlm has an option to implement MM-estimation.

> summary(rlm(calls ~ year, data=phones, method="MM"), cor = F)
Coefficients:

Value Std. Error t value
(Intercept) -52.423 2.916 -17.978

year 1.101 0.047 23.367

Residual standard error: 2.13 on 22 degrees of freedom

S-PLUS has a function lmRob in library section robust that implements a S+
slightly different MM-estimator with similar properties, and comes with a full set
of method functions, so it can be used routinely as a replacement for lm. Let us
try it on the phones data.

> library(robust, first = T) # S-PLUS only
> phones.lmr <- lmRob(calls ~ year, data = phones)
> summary(phones.lmr, cor = F)
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) -52.541 3.625 -14.493 0.000

year 1.104 0.061 18.148 0.000

Residual scale estimate: 2.03 on 22 degrees of freedom
Proportion of variation in response explained by model: 0.494

Test for Bias:
Statistics P-value

M-estimate 1.401 0.496
LS-estimate 0.243 0.886
> plot(phones.lmr)

This works well, rejecting all the spurious observations. The ‘test for bias’ is of
the M-estimator against the initial S-estimator; if the M-estimator appears biased
the initial S-estimator is returned.

Library section robust provides a wide range of robust techniques.
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Scottish hill races revisited

We return to the data on Scottish hill races studied in the introduction and Sec-
tion 6.3. There we saw one gross outlier and a number of other extreme observa-
tions.

> hills.lm
Coefficients:
(Intercept) dist climb

-8.992 6.218 0.011048
Residual standard error: 14.676

> hills1.lm # omitting Knock Hill
Coefficients:
(Intercept) dist climb

-13.53 6.3646 0.011855
Residual standard error: 8.8035

> rlm(time ~ dist + climb, data = hills)
Coefficients:
(Intercept) dist climb

-9.6067 6.5507 0.0082959
Scale estimate: 5.21

> summary(rlm(time ~ dist + climb, data = hills,
weights = 1/dist^2, method = "MM"), cor = F)

Coefficients:
Value Std. Error t value

(Intercept) -1.802 1.664 -1.083
dist 5.244 0.233 22.549
climb 0.007 0.001 9.391

Residual standard error: 4.84 on 32 degrees of freedom

> lqs(time ~ dist + climb, data = hills, nsamp = "exact")
Coefficients:
(Intercept) dist climb
-1.26 4.86 0.00851

Scale estimates 2.94 3.01

Notice that the intercept is no longer significant in the robust weighted fits. By
default lqs uses a random search, but here exhaustive enumeration is possible,
so we use it.

If we move to the model for inverse speed:

> summary(hills2.lm) # omitting Knock Hill
Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 4.900 0.474 10.344 0.000

grad 0.008 0.002 5.022 0.000

Residual standard error: 1.28 on 32 degrees of freedom
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> summary(rlm(ispeed ~ grad, data = hills), cor = F)
Coefficients:

Value Std. Error t value
(Intercept) 5.176 0.381 13.585

grad 0.007 0.001 5.428

Residual standard error: 0.869 on 33 degrees of freedom
# method="MM" results are very similar.
> # S: summary(lmRob(ispeed ~ grad, data = hills))

Value Std. Error t value Pr(>|t|)
(Intercept) 5.082 0.403 12.612 0.000

grad 0.008 0.002 5.055 0.000

Residual scale estimate: 0.819 on 33 degrees of freedom

> lqs(ispeed ~ grad, data = hills)
Coefficients:
(Intercept) grad
4.75 0.00805

Scale estimates 0.608 0.643

The results are in close agreement with the least-squares results after removing
Knock Hill.

6.6 Bootstrapping Linear Models

In frequentist inference we have to consider what might have happened but did
not. Linear models can arise exactly or approximately in a number of ways. The
most commonly considered form is

Y = Xβ + ϵ

in which only ϵ is considered to be random. This supposes that in all (hypothet-
ical) repetitions the same x points would have been chosen, but the responses
would vary. This is a plausible assumption for a designed experiment such as the
N, P, K experiment on page 165 and for an observational study such as Quine’s
with prespecified factors. It is less clearly suitable for the Scottish hill races, and
clearly not correct for Whiteside’s gas consumption data.

Another form of regression is sometimes referred to as the random regressor
case in which the pairs (xi, yi) are thought of as a random sample from a pop-
ulation and we are interested in the regression function f(x) = E

(
Y |X = x

)

which is assumed to be linear. This seems appropriate for the gas consumption
data. However, it is common to perform conditional inference in this case and
condition on the observed xs, converting this to a fixed-design problem. For ex-
ample, in the hill races the inferences drawn depend on whether certain races,
notably Bens of Jura, were included in the sample. As they were included, con-
clusions conditional on the set of races seems most pertinent. (There are other
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ways that linear models can arise, including calibration problems and where both
x and y are measured with error about a true linear relationship.)

These considerations are particularly relevant when we consider bootstrap re-
sampling. The most obvious form of bootstrapping is to randomly sample pairs
(xi, yi) with replacement,8 which corresponds to randomlyweighted regressions.
However, this may not be appropriate in not mimicking the assumed random vari-
ation and in some examples in producing singular fits with high probability. The
main alternative, model-based resampling, is to resample the residuals. After fit-
ting the linear model we have

yi = xiβ̂ + ei

and we create a new dataset by yi = xiβ̂+e∗i where the (e∗i ) are resampled with
replacement from the residuals (ei). There are a number of possible objections to
this procedure. First, the residuals need not have mean zero if there is no intercept
in the model, and it is usual to subtract their mean. Second, they do not have the
correct variance or even the same variance. Thus we can adjust their variance by
resampling the modified residuals ri = e1/

√
1− hii, which have variance σ2

from (6.3).
We see bootstrapping as having little place in least-squares regression. If the

errors are close to normal, the standard theory suffices. If not, there are better
methods of fitting than least-squares, or perhaps the data should be transformed
as in the quine dataset on page 171.

The distribution theory for the estimated coefficients in robust regression is
based on asymptotic theory, so we could use bootstrap estimates of variability as
an alternative. Resampling the residuals seems most appropriate for the phones
data.

library(boot)
fit <- lm(calls ~ year, data = phones)
ph <- data.frame(phones, res = resid(fit), fitted = fitted(fit))
ph.fun <- function(data, i) {

d <- data
d$calls <- d$fitted + d$res[i]
coef(update(fit, data=d))

}

(ph.lm.boot <- boot(ph, ph.fun, R = 999))
....
original bias std. error

t1* -260.0592 0.210500 95.3262
t2* 5.0415 -0.011469 1.5385

fit <- rlm(calls ~ year, method = "MM", data = phones)
ph <- data.frame(phones, res = resid(fit), fitted = fitted(fit))
(ph.rlm.boot <- boot(ph, ph.fun, R = 999))

....

8Davison and Hinkley (1997) call this case-based resampling.
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Table 6.1: Layout of a classic N, P, K fractional factorial design. The response is yield (in
lbs/(1/70)acre-plot).

pk np — nk
49.5 62.8 46.8 57.0
n npk k p
59.8 58.5 55.5 56.0
p npk n k
62.8 55.8 69.5 55.0

n npk k p
62.0 48.8 45.5 44.2
np — nk pk
52.0 51.5 49.8 48.8
nk np pk —
57.2 59.0 53.2 56.0

original bias std. error
t1* -52.4230 2.354793 26.98130
t2* 1.1009 -0.014189 0.37449

(The rlm bootstrap runs took about fifteen minutes,9 and readers might like to
start with a smaller number of resamples.) These results suggest that the asymp-
totic theory for rlm is optimistic for this example, but as the residuals are clearly
serially correlated the validity of the bootstrap is equally in doubt. Statistical in-
ference really does depend on what one considers might have happened but did
not.

The bootstrap results can be investigated further by using plot, and boot.ci
will give confidence intervals for the coefficients. The robust results have very
long tails.

6.7 Factorial Designs and Designed Experiments

Factorial designs are powerful tools in the design of experiments. Experimenters
often cannot afford to perform all the runs needed for a complete factorial ex-
periment, or they may not all be fitted into one experimental block. To see what
can be achieved, consider the following N, P, K (nitrogen, phosphate, potassium)
factorial experiment on the growth of peas which was conducted on six blocks
shown in Table 6.1.

Half of the design (technically a fractional factorial design) is performed in
each of six blocks, so each half occurs three times. (If we consider the variables to
take values ±1, the halves are defined by even or odd parity, equivalently product
equal to +1 or −1.) Note that the NPK interaction cannot be estimated as it is
confoundedwith block differences, specifically with (b2 +b3+b4−b1−b5−b6).
An ANOVA table may be computed by

> (npk.aov <- aov(yield ~ block + N*P*K, data = npk))
....

Terms:

9Using S-PLUS under Linux; R took 90 seconds.
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block N P K N:P N:K
Sum of Squares 343.29 189.28 8.40 95.20 21.28 33.14

Deg. of Freedom 5 1 1 1 1 1
P:K Residuals

Sum of Squares 0.48 185.29
Deg. of Freedom 1 12

Residual standard error: 3.9294
1 out of 13 effects not estimable
Estimated effects are balanced
> summary(npk.aov)

Df Sum of Sq Mean Sq F Value Pr(F)
block 5 343.29 68.66 4.447 0.01594

N 1 189.28 189.28 12.259 0.00437
P 1 8.40 8.40 0.544 0.47490
K 1 95.20 95.20 6.166 0.02880

N:P 1 21.28 21.28 1.378 0.26317
N:K 1 33.14 33.14 2.146 0.16865
P:K 1 0.48 0.48 0.031 0.86275

Residuals 12 185.29 15.44

> alias(npk.aov)
....

Complete
(Intercept) block1 block2 block3 block4 block5 N P K

N:P:K 1 0.33 0.17 -0.3 -0.2
N:P N:K P:K

N:P:K
> coef(npk.aov)
(Intercept) block1 block2 block3 block4 block5

54.875 1.7125 1.6792 -1.8229 -1.0137 0.295
N P K N:P N:K P:K

2.8083 -0.59167 -1.9917 -0.94167 -1.175 0.14167

Note how the N:P:K interaction is silently omitted in the summary, although its
absence is mentioned in printing npk.aov. The alias command shows which
effect is missing (the particular combinations corresponding to the use of Helmert
contrasts for the factor block ).

Only the N and K main effects are significant (we ignore blocks whose terms
are there precisely because we expect them to be important and so we must allow
for them). For two-level factors the Helmert contrast is the same as the sum
contrast (up to sign) giving −1 to the first level and +1 to the second level. Thus
the effects of adding nitrogen and potassium are 5.62 and −3.98, respectively.
This interpretation is easier to see with treatment contrasts:

> options(contrasts = c("contr.treatment", "contr.poly"))
> npk.aov1 <- aov(yield ~ block + N + K, data = npk)
> summary.lm(npk.aov1)

....
Coefficients:
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Value Std. Error t value Pr(>|t|)
....

N 5.617 1.609 3.490 0.003
K -3.983 1.609 -2.475 0.025

Residual standard error: 3.94 on 16 degrees of freedom

Note the use of summary.lm to give the standard errors. Standard errors of
contrasts can also be found from the function se.contrast. The full form is
quite complex, but a simple use is:

> se.contrast(npk.aov1, list(N == "0", N == "1"), data = npk)
Refitting model to allow projection
[1] 1.6092

For highly regular designs such as this standard errors may also be found along
with estimates of means, effects and other quantities using model.tables.

> model.tables(npk.aov1, type = "means", se = T)
....

N
0 1

52.067 57.683
....

Standard errors for differences of means
block N K
2.7872 1.6092 1.6092

replic. 4.0000 12.0000 12.0000

Generating designs

The three functions10 expand.grid, fac.design and oa.design can each be
used to construct designs such as our example.

Of these, expand.grid is the simplest. It is used in a similar way to
data.frame; the arguments may be named and the result is a data frame with
those names. The columns contain all combinations of values for each argument.
If the argument values are numeric the column is numeric; if they are anything
else, for example, character, the column is a factor. Consider an example:

> mp <- c("-", "+")
> (NPK <- expand.grid(N = mp, P = mp, K = mp))

N P K
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

10Only expand.grid is in R.
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Note that the first column changes fastest and the last slowest. This is a single
complete replicate.

Our example used three replicates, each split into two blocks so that the block
comparison is confounded with the highest-order interaction. We can construct
such a design in stages. First we find a half-replicate to be repeated three times
and form the contents of three of the blocks. The simplest way to do this is to use
fac.design :

blocks13 <- fac.design(levels = c(2, 2, 2),
factor= list(N=mp, P=mp, K=mp), rep = 3, fraction = 1/2)

The first two arguments give the numbers of levels and the factor names and level
labels. The third argument gives the number of replications (default 1). The
fraction argument may only be used for 2p factorials. It may be given either
as a small negative power of 2, as here, or as a defining contrast formula. When
fraction is numerical the function chooses a defining contrast that becomes the
fraction attribute of the result. For half-replicates the highest-order interaction
is chosen to be aliased with the mean. To find the complementary fraction for
the remaining three blocks we need to use the defining contrast formula form for
fraction :

blocks46 <- fac.design(levels = c(2, 2, 2),
factor = list(N=mp, P=mp, K=mp), rep = 3, fraction = ~ -N:P:K)

(This is explained in the following.) To complete our design we put the blocks
together, add in the block factor and randomize:

NPK <- design(block = factor(rep(1:6, each = 4)),
rbind(blocks13, blocks46))

i <- order(runif(6)[NPK$block], runif(24))
NPK <- NPK[i,] # Randomized

Using design instead of data.frame creates an object of class design that
inherits from data.frame. For most purposes designs and data frames are equiv-
alent, but some generic functions such as plot, formula and alias have useful
design methods.

Defining contrast formulae resemble model formulae in syntax only; the
meaning is quite distinct. There is no left-hand side. The right-hand side con-
sists of colon products of factors only, separated by + or - signs. A plus (or
leading blank) specifies that the treatments with positive signs for that contrast
are to be selected and a minus those with negative signs. A formula such as
~A:B:C-A:D:E specifies a quarter-replicate consisting of the treatments that have
a positive sign in the ABC interaction and a negative sign in ADE.

Box, Hunter and Hunter (1978, §12.5) consider a 27−4 design used for an
experiment in riding up a hill on a bicycle. The seven factors are Seat (up or
down), Dynamo (off or on), Handlebars (up or down), Gears (low or medium),
Raincoat (on or off), Breakfast (yes or no) and Tyre pressure (hard or soft). A
resolution III design was used, so the main effects are not aliased with each other.
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Such a design cannot be constructed using a numerical fraction in fac.design,
so the defining contrasts have to be known. Box et al. use the design relations:

D = AB, E = AC, F = BC, G = ABC

which mean that ABD, ACE, BCF and ABCG are all aliased with the mean,
and form the defining contrasts of the fraction. Whether we choose the positive
or negative halves is immaterial here.

> lev <- rep(2, 7)
> factors <- list(S=mp, D=mp, H=mp, G=mp, R=mp, B=mp, P=mp)
> (Bike <- fac.design(lev, factors,

fraction = ~ S:D:G + S:H:R + D:H:B + S:D:H:P))
S D H G R B P

1 - - - - - - -
2 - + + + + - -
3 + - + + - + -
4 + + - - + + -
5 + + + - - - +
6 + - - + + - +
7 - + - + - + +
8 - - + - + + +

Fraction: ~ S:D:G + S:H:R + D:H:B + S:D:H:P

(We chose P for pressure rather than T for tyres since T and F are reserved
identifiers.)

We may check the symmetry of the design using replications :
> replications(~.^2, data = Bike)
S D H G R B P S:D S:H S:G S:R S:B S:P D:H D:G D:R D:B D:P H:G
4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2
H:R H:B H:P G:R G:B G:P R:B R:P B:P
2 2 2 2 2 2 2 2 2

Fractions may be specified either in a call to fac.design or subsequently using
the fractionate function.

The third function, oa.design, provides some resolution III designs (also
known asmain effect plans or orthogonal arrays) for factors at two or three levels.
Only low-order cases are provided, but these are the most useful in practice.

6.8 An Unbalanced Four-Way Layout

Aitkin (1978) discussed an observational study of S. Quine. The response is the
number of days absent from school in a year by children from a large town in
rural New South Wales, Australia. The children were classified by four factors,
namely,

Age 4 levels: primary, first, second or third form
Eth 2 levels: aboriginal or non-aboriginal
Lrn 2 levels: slow or average learner
Sex 2 levels: male or female.
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The dataset is included in the paper of Aitkin (1978) and is available as data
frame quine in MASS. This has been explored several times already, but we now
consider a more formal statistical analysis.

There were 146 children in the study. The frequencies of the combinations of
factors are

> attach(quine)
> table(Lrn, Age, Sex, Eth)
, , F, A , , F, N

F0 F1 F2 F3 F0 F1 F2 F3
AL 4 5 1 9 AL 4 6 1 10
SL 1 10 8 0 SL 1 11 9 0

, , M, A , , M, N
F0 F1 F2 F3 F0 F1 F2 F3

AL 5 2 7 7 AL 6 2 7 7
SL 3 3 4 0 SL 3 7 3 0

(The output has been slightly rearranged to save space.) The classification is
unavoidably very unbalanced. There are no slow learners in form F3, but all
28 other cells are non-empty. In his paper Aitkin considers a normal analysis
on the untransformed response, but in the reply to the discussion he chooses a
transformed response, log(Days+ 1).

A casual inspection of the data shows that homoscedasticity is likely to be
an unrealistic assumption on the original scale, so our first step is to plot the cell
variances and standard deviations against the cell means.

Means <- tapply(Days, list(Eth, Sex, Age, Lrn), mean)
Vars <- tapply(Days, list(Eth, Sex, Age, Lrn), var)
SD <- sqrt(Vars)
par(mfrow = c(1, 2))
plot(Means, Vars, xlab = "Cell Means", ylab = "Cell Variances")
plot(Means, SD, xlab = "Cell Means", ylab = "Cell Std Devn.")

Missing values are silently omitted from the plot. Interpretation of the result in
Figure 6.5 requires some caution because of the small and widely different de-
grees of freedom on which each variance is based. Nevertheless the approximate
linearity of the standard deviations against the cell means suggests a logarithmic
transformation or something similar is appropriate. (See, for example, Rao, 1973,
§6g.)

Some further insight on the transformation needed is provided by considering
a model for the transformed observations

y(λ) =
{

(yλ − 1)/λ λ ̸= 0
log y λ = 0

where here y = Days+ α. (The positive constant α is added to avoid problems
with zero entries.) Rather than include α as a second parameter we first consider
Aitkin’s choice of α = 1. Box and Cox (1964) show that the profile likelihood
function for λ is

L̂(λ) = const− n
2 logRSS(z(λ))
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Figure 6.5: Two diagnostic plots for the Quine data.

where z(λ) = y(λ)/ẏλ−1, ẏ is the geometric mean of the observations and
RSS(z(λ)) is the residual sum of squares for the regression of z(λ).

Box & Cox suggest using the profile likelihood function for the largest linear
model to be considered as a guide in choosing a value for λ, which will then
remain fixed for any remaining analyses. Ideally other considerations from the
context will provide further guidance in the choice of λ, and in any case it is
desirable to choose easily interpretable values such as square-root, log or inverse.

Our MASS function boxcox calculates and (optionally) displays the Box–Cox
profile likelihood function, together with a horizontal line showing what would be
an approximate 95% likelihood ratio confidence interval for λ. The function is
generic and several calling protocols are allowed but a convenient one to use here
is with the same arguments as lm together with an additional (named) argument,
lambda, to provide the sequence at which the marginal likelihood is to be evalu-
ated. (By default the result is extended using a spline interpolation.)

Since the dataset has four empty cells the full model Eth*Sex*Age*Lrn has a
rank-deficient model matrix. Hence in S-PLUS we must use singular.ok = T S+
to fit the model.

boxcox(Days+1 ~ Eth*Sex*Age*Lrn, data = quine, singular.ok = T,
lambda = seq(-0.05, 0.45, len = 20))

(Alternatively the first argument may be a fitted model object that supplies all
needed information apart from lambda.) The result is shown on the left-hand
panel of Figure 6.6 which suggests strongly that a log transformation is not opti-
mal when α = 1 is chosen. An alternative one-parameter family of transforma-
tions that could be considered in this case is

t(y,α) = log(y + α)

Using the same analysis as presented in Box and Cox (1964) the profile log like-
lihood for α is easily seen to be

L̂(α) = const− n
2 logRSS{log(y + α)}−

∑
log(y + α)
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Figure 6.6: Profile likelihood for a Box–Cox transformation model with displacement
α = 1, left, and a displaced log transformation model, right.

It is interesting to see how this may be calculated directly using low-level tools,
in particular the functions qr for the QR-decomposition and qr.resid for or-
thogonal projection onto the residual space. Readers are invited to look at our
functions logtrans.default and boxcox.default.

logtrans(Days ~ Age*Sex*Eth*Lrn, data = quine,
alpha = seq(0.75, 6.5, len = 20), singular.ok = T)

The result is shown in the right-hand panel of Figure 6.6. If a displaced log
transformation is chosen a value α = 2.5 is suggested, and we adopt this in our
analysis. Note that α = 1 is outside the notional 95% confidence interval. It can
also be checked that with α = 2.5 the log transform is well within the range of
reasonable Box–Cox transformations to choose.

Model selection

The complete model, Eth*Sex*Age*Lrn, has a different parameter for each
identified group and hence contains all possible simpler models for the mean as
special cases, but has little predictive or explanatory power. For a better insight
into the mean structure we need to find more parsimonious models. Before con-
sidering tools to prune or extend regression models it is useful to make a few
general points on the process itself.

Marginality restrictions
In regression models it is usually the case that not all terms are on an equal footing
as far as inclusion or removal is concerned. For example, in a quadratic regression
on a single variable x one would normally consider removing only the highest-
degree term, x2, first. Removing the first-degree term while the second-degree
one is still present amounts to forcing the fitted curve to be flat at x = 0, and
unless there were some good reason from the context to do this it would be an
arbitrary imposition on the model. Another way to view this is to note that if
we write a polynomial regression in terms of a new variable x⋆ = x − α the
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model remains in predictive terms the same, but only the highest-order coefficient
remains invariant. If, as is usually the case, we would like our model selection
procedure not to depend on the arbitrary choice of origin we must work only with
the highest-degree terms at each stage.

The linear term in x is said to be marginal to the quadratic term, and the
intercept term is marginal to both. In a similar way if a second-degree term in two
variables, x1x2, is present, any linear terms in either variable or an intercept term
are marginal to it.

There are circumstances where a regression through the origin does make
sense, but in cases where the origin is arbitrary one would normally only consider
regression models where for each term present all terms marginal to it are also
present.

In the case of factors the situation is even more clear-cut. A two-factor in-
teraction a:b is marginal to any higher-order interaction that contains a and b.
Fitting a model such as a + a:b leads to a model matrix where the columns
corresponding to a:b are extended to compensate for the absent marginal term,
b, and the fitted values are the same as if it were present. Fitting models with
marginal terms removed such as with a*b - b generates a model with no read-
ily understood statistical meaning11 but updating models specified in this way
using update changes the model matrix so that the absent marginal term again
has no effect on the fitted model. In other words, removing marginal factor terms
from a fitted model is either statistically meaningless or futile in the sense that the
model simply changes its parametrization to something equivalent.

Variable selection for the Quine data

The anova function when given a single fitted-model object argument constructs
a sequential analysis of variance table. That is, a sequence of models is fitted
by expanding the formula, arranging the terms in increasing order of marginality
and including one additional term for each row of the table. The process is order-
dependent for non-orthogonal designs and several different orders may be needed
to appreciate the analysis fully if the non-orthogonality is severe. For an orthog-
onal design the process is not order-dependent provided marginality restrictions
are obeyed.

To explore the effect of adding or dropping terms from a model our two func-
tions addterm and dropterm are usually more convenient. These allow the
effect of, respectively, adding or removing individual terms from a model to be
assessed, where the model is defined by a fitted-model object given as the first
argument. For addterm a second argument is required to specify the scope of
the terms considered for inclusion. This may be a formula or an object defining a
formula for a larger model. Terms are included or removed in such a way that the
marginality principle for factor terms is obeyed; for purely quantitative regressors
this has to be managed by the user.

11Marginal terms are sometimes removed in this way in order to calculate what are known as
‘Type III sums of squares’ but we have yet to see a situation where this makes compelling statisti-
cal sense. If they are needed, they can be computed by summary.aov in S-PLUS.
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Both functions are generic and compute the change in AIC (Akaike, 1974)

AIC = −2maximized log-likelihood+ 2 # parameters

Since the log-likelihood is defined only up to a constant depending on the data,
this is also true of AIC. For a regression model with n observations, p parame-
ters and normally-distributed errors the log-likelihood is

L(β,σ2; y) = const− n
2 log σ2 − 1

2σ2 ∥y −Xβ∥2

and on maximizing over β we have

L(β̂,σ2; y) = const− n
2 log σ2 − 1

2σ2RSS

Thus if σ2 is known, we can take

AIC = RSS
σ2 + 2p + const

but if σ2 is unknown,

L(β̂, σ̂2; y) = const− n
2 log σ̂2 − n

2 , σ̂2 = RSS/n

and so
AIC = n log(RSS/n) + 2p + const

For known σ2 it is conventional to use Mallows’ Cp,

Cp = RSS/σ2 + 2p− n

(Mallows, 1973) and in this case addterm and dropterm label their output as
Cp.

For an example consider removing the four-way interaction from the complete
model and assessing which three-way terms might be dropped next.

> quine.hi <- aov(log(Days + 2.5) ~ .^4, quine)
> quine.nxt <- update(quine.hi, . ~ . - Eth:Sex:Age:Lrn)
> dropterm(quine.nxt, test = "F")
Single term deletions
....

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 64.099 -68.184

Eth:Sex:Age 3 0.9739 65.073 -71.982 0.6077 0.61125
Eth:Sex:Lrn 1 1.5788 65.678 -66.631 2.9557 0.08816
Eth:Age:Lrn 2 2.1284 66.227 -67.415 1.9923 0.14087
Sex:Age:Lrn 2 1.4662 65.565 -68.882 1.3725 0.25743

Clearly dropping Eth:Sex:Age most reduces AIC but dropping Eth:Sex:Lrn
would increase it. Note that only non-marginal terms are included; none are sig-
nificant in a conventional F -test.

Alternatively we could start from the simplest model and consider adding
terms to reduce Cp; in this case the choice of scale parameter is important, since
the simple-minded choice is inflated and may over-penalize complex models.
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> quine.lo <- aov(log(Days+2.5) ~ 1, quine)
> addterm(quine.lo, quine.hi, test = "F")
Single term additions
....

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 106.79 -43.664

Eth 1 10.682 96.11 -57.052 16.006 0.00010
Sex 1 0.597 106.19 -42.483 0.809 0.36981
Age 3 4.747 102.04 -44.303 2.202 0.09048
Lrn 1 0.004 106.78 -41.670 0.006 0.93921

It appears that only Eth and Age might be useful, although in fact all factors are
needed since some higher-way interactions lead to large decreases in the residual
sum of squares.

Automated model selection
Our function stepAIC may be used to automate the process of stepwise selection.
It requires a fitted model to define the starting process (one somewhere near the
final model is probably advantageous), a list of two formulae defining the upper
(most complex) and lower (most simple) models for the process to consider and
a scale estimate. If a large model is selected as the starting point, the scope and
scale arguments have generally reasonable defaults, but for a small model where
the process is probably to be one of adding terms, they will usually need both to
be supplied. (A further argument, direction, may be used to specify whether
the process should only add terms, only remove terms, or do either as needed.)

By default the function produces a verbose account of the steps it takes which
we turn off here for reasons of space, but which the user will often care to note.
The anova component of the result shows the sequence of steps taken and the
reduction in AIC or Cp achieved.

> quine.stp <- stepAIC(quine.nxt,
scope = list(upper = ~Eth*Sex*Age*Lrn, lower = ~1),
trace = F)

> quine.stp$anova
....

Step Df Deviance Resid. Df Resid. Dev AIC
1 120 64.099 -68.184
2 - Eth:Sex:Age 3 0.9739 123 65.073 -71.982
3 - Sex:Age:Lrn 2 1.5268 125 66.600 -72.597

At this stage we might want to look further at the final model from a significance
point of view. The result of stepAIC has the same class as its starting point
argument, so in this case dropterm may be used to check each remaining non-
marginal term for significance.

> dropterm(quine.stp, test = "F")
Df Sum of Sq RSS AIC F Value Pr(F)

<none> 66.600 -72.597
Sex:Age 3 10.796 77.396 -56.663 6.7542 0.00029

Eth:Sex:Lrn 1 3.032 69.632 -68.096 5.6916 0.01855
Eth:Age:Lrn 2 2.096 68.696 -72.072 1.9670 0.14418
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The term Eth:Age:Lrn is not significant at the conventional 5% significance
level. This suggests, correctly, that selecting terms on the basis of AIC can be
somewhat permissive in its choice of terms, being roughly equivalent to choosing
an F -cutoff of 2. We can proceed manually

> quine.3 <- update(quine.stp, . ~ . - Eth:Age:Lrn)
> dropterm(quine.3, test = "F")

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 68.696 -72.072
Eth:Age 3 3.031 71.727 -71.768 1.8679 0.13833
Sex:Age 3 11.427 80.123 -55.607 7.0419 0.00020
Age:Lrn 2 2.815 71.511 -70.209 2.6020 0.07807

Eth:Sex:Lrn 1 4.696 73.391 -64.419 8.6809 0.00383
> quine.4 <- update(quine.3, . ~ . - Eth:Age)
> dropterm(quine.4, test = "F")

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 71.727 -71.768
Sex:Age 3 11.566 83.292 -55.942 6.987 0.000215
Age:Lrn 2 2.912 74.639 -69.959 2.639 0.075279

Eth:Sex:Lrn 1 6.818 78.545 -60.511 12.357 0.000605
> quine.5 <- update(quine.4, . ~ . - Age:Lrn)
> dropterm(quine.5, test = "F")

Model:
log(Days + 2.5) ~ Eth + Sex + Age + Lrn + Eth:Sex + Eth:Lrn

+ Sex:Age + Sex:Lrn + Eth:Sex:Lrn
Df Sum of Sq RSS AIC F Value Pr(F)

<none> 74.639 -69.959
Sex:Age 3 9.9002 84.539 -57.774 5.836 0.0008944

Eth:Sex:Lrn 1 6.2988 80.937 -60.130 11.140 0.0010982

or by setting k = 4 in stepAIC. We obtain a model equivalent to Sex/(Age +
Eth*Lrn)which is the same as that found by Aitkin (1978), apart from his choice
of α = 1 for the displacement constant. (However, when we consider a negative
binomial model for the same data in Section 7.4 a more extensive model seems to
be needed.)

Standard diagnostic checks on the residuals from our final fitted model show
no strong evidence of any failure of the assumptions, as the reader may wish to
verify.

It can also be verified that had we started from a very simple model and
worked forwards we would have stopped much sooner with a much simpler
model, even using the same scale estimate. This is because the major reduc-
tions in the residual sum of squares only occur when the third-order interaction
Eth:Sex:Lrn is included.

There are other tools in S-PLUS for model selection called stepwise and
leaps,12 but these only apply for quantitative regressors. There is also no possi-
bility of ensuring that marginality restrictions are obeyed.
12There are equivalent functions in the R package leaps on CRAN.
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Figure 6.7: Box–Cox plots for the cpus data. Left: original regressors. Right: discretized
regressors.

6.9 Predicting Computer Performance

Ein-Dor and Feldmesser (1987) studied data on the performance on a benchmark
of a mix of minicomputers and mainframes. The measure was normalized relative
to an IBM 370/158–3. There were six machine characteristics: the cycle time
(nanoseconds), the cache size (Kb), the main memory size (Kb) and number of
channels. (For the latter two there are minimum and maximum possible values;
what the actual machine tested had is unspecified.) The original paper gave a
linear regression for the square root of performance, but log scale looks more
intuitive.

We can consider the Box–Cox family of transformations, Figure 6.7.

boxcox(perf ~ syct + mmin + mmax + cach + chmin + chmax,
data = cpus, lambda = seq(0, 1, 0.1))

which tends to suggest a power of around 0.3 (and excludes both 0 and 0.5 from
its 95% confidence interval). However, this does not allow for the regressors to be
transformed, and many of them would be most naturally expressed on log scale.
One way to allow the variables to be transformed is to discretize them; we show
a more sophisticated approach in Section 8.8.

cpus1 <- cpus
attach(cpus)
for(v in names(cpus)[2:7])

cpus1[[v]] <- cut(cpus[[v]], unique(quantile(cpus[[v]])),
include.lowest = T)

detach()
boxcox(perf ~ syct + mmin + mmax + cach + chmin + chmax,

data = cpus1, lambda = seq(-0.25, 1, 0.1))

which does give a confidence interval including zero.
The purpose of this study is to predict computer performance. We randomly

select 100 examples for fitting the models and test the performance on the remain-
ing 109 examples.
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> set.seed(123)
> cpus2 <- cpus[, 2:8] # excludes names, authors’ predictions
> cpus.samp <- sample(1:209, 100)
> cpus.lm <- lm(log10(perf) ~ ., data = cpus2[cpus.samp, ])
> test.cpus <- function(fit)

sqrt(sum((log10(cpus2[-cpus.samp, "perf"]) -
predict(fit, cpus2[-cpus.samp,]))^2)/109)

> test.cpus(cpus.lm)
[1] 0.21295
> cpus.lm2 <- stepAIC(cpus.lm, trace = F)
> cpus.lm2$anova

Step Df Deviance Resid. Df Resid. Dev AIC
1 93 3.2108 -329.86
2 - syct 1 0.013177 94 3.2240 -331.45
> test.cpus(cpus.lm2)
[1] 0.21711

So selecting a smaller model does not improve the performance on this random
split. We consider a variety of non-linearmodels for this example in later chapters.

6.10 Multiple Comparisons

As we all know, the theory of p-values of hypothesis tests and of the coverage
of confidence intervals applies to pre-planned analyses. However, the only cir-
cumstances in which an adjustment is routinely made for testing after looking at
the data is in multiple comparisons of contrasts in designed experiments. This is
sometimes known as post hoc adjustment.

Consider the experiment on yields of barley in our dataset immer.13 This has
the yields of five varieties of barley at six experimental farms in both 1931 and
1932; we average the results for the two years. An analysis of variance gives

> immer.aov <- aov((Y1 + Y2)/2 ~ Var + Loc, data = immer)
> summary(immer.aov)

Df Sum of Sq Mean Sq F Value Pr(F)
Var 4 2655 663.7 5.989 0.0024526
Loc 5 10610 2122.1 19.148 0.0000005

Residuals 20 2217 110.8

The interest is in the difference in yield between varieties, and there is a
statistically significant difference. We can see the mean yields by a call to
model.tables.

> model.tables(immer.aov, type = "means", se = T, cterms = "Var")
....

Var
M P S T V

94.39 102.54 91.13 118.20 99.18

13The Trellis dataset barley discussed in Cleveland (1993) is a more extensive version of the
same dataset.
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Figure 6.8: Simultaneous 95% confidence intervals for variety comparisons in the immer
dataset.

Standard errors for differences of means
Var

6.078
replic. 6.000

This suggests that variety T is different from all the others, as a pairwise signif-
icant difference at 5% would exceed 6.078 × t20(0.975) ≈ 12.6; however the
comparisons to be made have been selected after looking at the fit.

Function multicomp14 allows us to compute simultaneous confidence inter-
vals in this problem, that is, confidence intervals such that the probability that
they cover the true values for all of the comparisons considered is bounded above
by 5% for 95% confidence intervals. We can also plot the confidence intervals
(Figure 6.8) by

> multicomp(immer.aov, plot = T) # S-PLUS only
95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.9925
response variable: (Y1 + Y2)/2

intervals excluding 0 are flagged by ’****’

Estimate Std.Error Lower Bound Upper Bound
M-P -8.15 6.08 -26.300 10.00
M-S 3.26 6.08 -14.900 21.40
M-T -23.80 6.08 -42.000 -5.62 ****
M-V -4.79 6.08 -23.000 13.40
P-S 11.40 6.08 -6.780 29.60
P-T -15.70 6.08 -33.800 2.53
P-V 3.36 6.08 -14.800 21.50
S-T -27.10 6.08 -45.300 -8.88 ****

14Available in S-PLUS, but not in R.
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S-V -8.05 6.08 -26.200 10.10
T-V 19.00 6.08 0.828 37.20 ****

This does not allow us to conclude that variety T has a significantly different
yield than variety P.

We can do the Tukey multiple comparison test in R by

> (tk <- TukeyHSD(immer.aov, which = "Var"))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = (Y1 + Y2)/2 ~ Var + Loc, data = immer)
$Var

diff lwr upr
P-M 8.1500 -10.0376 26.33759
S-M -3.2583 -21.4459 14.92925
T-M 23.8083 5.6207 41.99592
V-M 4.7917 -13.3959 22.97925
S-P -11.4083 -29.5959 6.77925
T-P 15.6583 -2.5293 33.84592
V-P -3.3583 -21.5459 14.82925
T-S 27.0667 8.8791 45.25425
V-S 8.0500 -10.1376 26.23759
V-T -19.0167 -37.2043 -0.82908

> plot(tk)

We may want to restrict the set of comparisons, for example to comparisons
with a control treatment. The dataset oats is discussed on page 282; here we
ignore the split-plot structure.

> oats1 <- aov(Y ~ N + V + B, data = oats)
> summary(oats1)

Df Sum of Sq Mean Sq F Value Pr(F)
N 3 20020 6673.5 28.460 0.000000
V 2 1786 893.2 3.809 0.027617
B 5 15875 3175.1 13.540 0.000000

Residuals 61 14304 234.5

> multicomp(oats1, focus = "V") # S-PLUS only

95 % simultaneous confidence intervals for specified
linear combinations, by the Tukey method

critical point: 2.4022
response variable: Y

intervals excluding 0 are flagged by ’****’

Estimate Std.Error Lower Bound
Golden.rain-Marvellous -5.29 4.42 -15.90
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Golden.rain-Victory 6.88 4.42 -3.74
Marvellous-Victory 12.20 4.42 1.55

Upper Bound
Golden.rain-Marvellous 5.33

Golden.rain-Victory 17.50
Marvellous-Victory 22.80 ****

> # R: (tk <- TukeyHSD(oats1, which = "V"))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Y ~ N + V + B, data = oats)
$V

diff lwr upr
Marvellous-Golden.rain 5.2917 -5.3273 15.9107
Victory-Golden.rain -6.8750 -17.4940 3.7440
Victory-Marvellous -12.1667 -22.7857 -1.5477

> plot(tk)

> multicomp(oats1, focus = "N", comparisons = "mcc", control = 1)
....

Estimate Std.Error Lower Bound Upper Bound
0.2cwt-0.0cwt 19.5 5.1 7.24 31.8 ****
0.4cwt-0.0cwt 34.8 5.1 22.60 47.1 ****
0.6cwt-0.0cwt 44.0 5.1 31.70 56.3 ****

Note that we need to specify the control level; perversely by default the last level
is chosen. We might also want to know if all the increases in nitrogen give signif-
icant increases in yield, which we can examine by

> lmat <- matrix(c(0,-1,1,rep(0, 11), 0,0,-1,1, rep(0,10),
0,0,0,-1,1,rep(0,9)), , 3,

dimnames = list(NULL,
c("0.2cwt-0.0cwt", "0.4cwt-0.2cwt", "0.6cwt-0.4cwt")))

> multicomp(oats1, lmat = lmat, bounds = "lower",
comparisons = "none")

....
Estimate Std.Error Lower Bound

0.2cwt-0.0cwt 19.50 5.1 8.43 ****
0.4cwt-0.2cwt 15.30 5.1 4.27 ****
0.6cwt-0.4cwt 9.17 5.1 -1.90

There is a bewildering variety of methods for multiple comparisons reflected
in the options for multicomp. Miller (1981), Hsu (1996) and Yandell (1997,
Chapter 6) give fuller details. Do remember that this tackles only part of the
problem; the analyses here have been done after selecting a model and specific
factors on which to focus. The allowance for multiple comparisons is only over
contrasts of one selected factor in one selected model.


