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Classification

Historically, objects classified into groups

– periodic table of the elements (chemistry)
– taxonomy (zoology, botany)

Why classify?

– organizational convenience, summary
– prediction
– explanation

Note: different aims may lead to different classifications; e.g.
SIZE of object vs. its USE

Classification divides objects into groups based on a set of
values
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Classification task

Task: assign objects to classes (groups) on the basis of
measurements made on the objects

Unsupervised: classes unknown, want to discover them from
the data (cluster analysis)

Supervised: classes are predefined, want to use a (training or
learning) set of labeled objects to form a classifier for
classification of future observations
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Example: tumor classification

Reliable and precise classification essential for successful
cancer treatment

Current methods for classifying human malignancies rely on a
variety of morphological, clinical and molecular variables

Uncertainties in diagnosis remain; likely that existing classes
are heterogeneous

Characterize molecular variations among tumors by
monitoring gene expression (microarray)

Hope: that microarrays will lead to more reliable tumor
classification (and therefore more appropriate treatments and
better outcomes)

There have been some successes in this area
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Discrimination

Objects (e.g. samples) are to be classified as belonging to one
of a number of predefined classes {1,2, . . . ,K}
Each object associated with a class label (or response)
Y ∈ {1,2, . . . ,K} and a feature vector (vector of predictor
variables) of p measurements: X = (X1, . . . ,XG)
Aim: predict Y from X

6 / 47



Intro Methods Iris data Tree construction Assessing classifiers

Classifiers

A predictor or classifier partitions (divides) the variable space
e.g. gene expression profiles) into K disjoint subsets,
A1, . . . ,AK , such that for a sample with expression profile
X = (X1, . . . ,Xp) in Ak the predicted class is k

Classifiers are from a learning set (LS) (or training set)
L = (X1,Y1), . . . , (Xn,Yn)
Classifier C built from a learning set L:

C(⋅,L) ∶ X → {1,2, ...,K}

Predicted class for observation X :

C(X ,L) = k if X is in Ak
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Some classification methods

(Fisher) Linear Discriminant Analysis (LDA)

Quadratic Discriminant Analysis (QDA), Diagonal
Discriminant Analysis (DDA)

k-nearest neighbors (knn)

Support Vector Machine (SVM)

Classification trees (CART)

Random Forests
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Fisher Linear Discriminant Analysis (LDA)

First applied in 1935 by M. Barnard at the suggestion of R. A.
Fisher, linear discriminant analysis (LDA):

1. finds linear combinations of the variables X = X1, . . . ,Xp with
large ratios of between-groups to within-groups sums of
squares – these are the discriminant variables;

2. predicts the class of an observation X by the class whose
mean vector is closest to X in terms of the discriminant
variables
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Quadratic and Diagonal Discriminant Analysis

LDA is derived assuming that within each class, X has a
multivariate normal distribution

In LDA assume covariance matrices in both classes are the
same: Σ1 = Σ2 = Σ

In quadratic discriminant analysis (QDA), the covariance
matrices can be different

In diagonal discriminant analysis (DDA), the covariance
matrices are diagonal

When the covariance matrices are diagonal and equal, the
discriminant rule is linear (variables are independent)
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Linear and Quadratic Discriminant Analysis

Classical and widely used tools for classification

Simple, intuitive: the predicted class for a test sample is the
class with the closest mean (using Mahalanobis distance,
which is scale-invariant and takes into account correlations)

Optimal when the model assumptions are true

Computationally simple

Often has good performance in practics
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Linear and Quadratic Discriminant Analysis – drawbacks

Linear or quadratic discriminant boundaries might not be
sufficiently flexible

Distributional assumptions may not hold, thereby degrading
performance

Performance may also degrade in the case of too many
features:

– overfitting (more on this below)
– highly variable parameter estimates
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k-nearest neighbors

Based on a measure of distance between observations (e.g.
Euclidean distance)

k-nearest neighbor rule classifies observation X as follows:

– find the k observations in the learning set closest to X
– predict the class of X by majority vote (i.e., choose the

class that is most common among those k observations)

The number of neighbors k can be chosen by cross-validation
(more on this later)

Important issues: choice of distance, selection of relevant
features
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Support Vector Machine (SVM)

Class separation: look for optimal separating hyperplane
between two classes by maximizing the margin between the
classes’ closest points

– points lying on the boundaries are the support vectors;
middle of the margin is the optimal separating
hyperplane;

Overlapping classes: data points on the “wrong” side of the
discriminant margin are downweighted to reduce their
influence (“soft margin”)

Nonlinearity: when no linear separator, data points projected
into a (usually) higher-dimensional space where the data
points effectively become linearly separable (projection
realized via kernel techniques)

Find solution: the whole task can be formulated as a
quadratic optimization problem, which can be solved by
known techniques
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Support Vector Machine (SVM)
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Trees

Provide means to express knowledge

Can aid in decision making

Can be portrayed graphically or by means of a chart

Response types:

– Categorical ⇒ Classification tree
– Continuous ⇒ Regression tree
– Survival ⇒ Survival tree

Available R packages include tree, rpart, tssa
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Classification trees (CART)

Partition the feature space into a set of rectangles, then fit a
simple model in each one

Binary tree structured classifiers are constructed by repeated
splits of subsets (nodes) of the measurement space X into two
descendant subsets (starting with X itself)

Each terminal subset is assigned a class label; the resulting
partition of X corresponds to the classifier
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CART: partition representation

18 / 47



Intro Methods Iris data Tree construction Assessing classifiers

Iris data

This classic data set gives measurements (cm) of 4 variables
for 50 flowers from each of 3 species of iris:

– sepal length
– sepal width
– petal length
– petal width

The species are Iris setosa, versicolor and virginica

The data were collected by Edgar Anderson (1935)

We will use the iris data to look at some of these methods
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Iris data: LDA
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Iris data: QDA

21 / 47



Intro Methods Iris data Tree construction Assessing classifiers

Iris data: DDA
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Iris data: knn
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Iris data: SVM
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Iris data: CART
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BREAK
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Three Aspects of Tree Construction

Split selection rule

– Binary splits – look only one step ahead
– Impurity measure (Gini index or entropy) to optimize

split

Split-stopping rule

– Issue: A very large tree will tend to overfit the data; too
small a tree might not capture important structure

– Usual solution: grow large tree then do pruning

Assignment of predicted values

– (weighted) Voting among observations in the node
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Feature selection

Feature selection is an extremely important issue in
classification

Particularly relevant for microarray data containing thousands
of features – most of which will not be useful for classification

Feature selection is automatic with trees

For DA, NN need preliminary selection

SVM tends to perform better with preliminary selection

Need to account for feature selection when assessing
performance to avoid bias

Missing data

– Automatic imputation with trees
– Otherwise, impute (or ignore)
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Polytomous classification

Many classifiers only work for binary (two-class) problems

It might be otherwise advantageous to convert a K -class
problem into a series of binary problems – e.g. large number
of unequally represented classes in the learning set

Two possibilities:

– All pairwise binary classification: final predicted class is
the class predicted most often in the (K2) individual
classifications

– One-versus-all binary classification: binary classification
K times; final predicted class is the class with the
highest estimated posterior probability

29 / 47



Intro Methods Iris data Tree construction Assessing classifiers

Performance assessment I

Often used in assessing classifiers in biomedical studies:

Brier score: Measures accuracy of a set of probability
assessments
Problem: Cannot be used for all classifier types

Area under the (ROC) curve (AUC): Receiver operating
characteristic (ROC) curve plots sensitivity (true positive rate)
vs. false positive rate for a binary classifier as the threshold
varies; area under the ROC curve (AUC) provides an overall
measure of classifier performance
Useful for comparing classifier performance
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AUC for ROC curves
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Performance assessment II

Resubstitution estimation: Error rate on the learning set
Problem: downward bias

Test set estimation: Divide cases in learning set into two sets,
L1 and L2; classifier built using L1, error rate computed for L2

(L1 and L2 must be iid)
Problem: reduced effective sample size
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Overfitting

As a classifier becomes more and more complex

– it can adapt to more complicated underlying structures
(decreased bias)

– resubstitution error rate increases (increased variance)

More parameters ⇒ More complex

Want to find an optimal complexity with minimum test error

Training (or learning) error decreases with complexity, and can
even drop to 0 for sufficiently high complexity

Highly complex classifiers can be modeling not just the signal
in the data, but also the noise

If the error in the learning set is very low, the model is
probably overfit

Overfit classifiers will typically generalize poorly, so you are
unlikely to get accurate predictions for new observations
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Overfitting
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Performance assessment III

V -fold cross-validation (CV) estimation: Cases in learning set
randomly divided into V subsets of (nearly) equal size. Build
classifiers leaving one set out; test set error rates computed on
left out set and averaged.
Bias-variance tradeoff: smaller V can give larger bias but
smaller variance

Leave-one-out cross-validation (LOOCV): special case of CV
with V = n

– low bias but high variance error rate estimates
– provides good estimates for stable (low variance)

classifiers (e.g. k-nn)
– computationally intensive for large n

Out-of-bag (oob) estimation: covered below

0.632 and 0.632+ estimation: covered below
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Cross-validation
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How NOT to estimate error

** DON’T DO THIS ** DON’T DO THIS **

Use the whole data set to choose which variables (features) to
use in the classifier

Divide the data into (10, say) subsets for CV

Leave out a subset and build a classifier with features chosen
from the whole data set

Use the classifier to predict the left out subset

Average over left out subsets to estimate error

** DON’T DO THIS ** DON’T DO THIS **
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Aggregating classifiers

Breiman (1996, 1998) found that gains in accuracy could be
obtained by aggregating predictors built from “perturbed
versions” of the learning set

The multiple versions of the predictor are aggregated by voting

Let C(⋅,Lb) denote the classifier built from the bth perturbed
learning set Lb, and let wb denote the weight given to
predictions made by this classifier

The predicted class for an observation x is given by

argmaxk∑
b

wb I (C(x ,Lb) = k)
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Bagging

Bagging = Bootstrap aggregating

Nonparametric Bootstrap (standard bagging): perturbed
learning sets drawn at random with replacement from the
learning set; predictors built for each perturbed dataset and
aggregated by plurality voting (wb = 1)

Parametric Bootstrap: perturbed learning sets specified by
parametric model (e.g. multivariate normal)

Convex pseudo-data (Breiman 1996)
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Out-of-bag (oob) error rate estimation

Out-of-bag error rate estimate: unbiased

Use the left out cases from each bootstrap sample as a test set

Classify these test set cases, and compare to the class labels
of the learning set to get the out-of-bag estimate of the error
rate
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0.632 and 0.632+ estimation

Proposal to reduce the upward bias of the bootstrap

Method uses a weighted combination of bootstrap error
estimate (weight 0.632) and resubstitution estimate (weight
0.368)

Further refinement produces the 0.632+ estimate, which
increases the weight of the bootstrap estimate when the
resubstitution error is small; seems particularly appropriate in
the case of overfitting
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Boosting

Freund and Schapire (1997), Breiman (1998)

Data resampled adaptively so that the weights in the
resampling are increased for those cases most often
misclassified

Predictor aggregation done by weighted voting
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Random Forests

Random Forests is a classification method based on
classification trees

In Random Forests, many classification trees are grown
(without pruning) based on randomly selected variables using
bootstrapped samples from the original data

To classify a new object from an input vector, put the input
vector down each of the trees in the “forest”

Each tree gives a classification (the tree “votes” for a class)

The Random Forest classifier chooses the classification having
the most votes (over all the trees in the forest)
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Classification of samples using microarray data

In the microarray context, confronted with “small n, large p”
problem: the number of features/variables p is high, in the
tens of thousands, but the number of samples n is small,
usually not more than a few hundred

Three approaches to deal with the n ≪ p setting:

1. variable selection, for example using univariate
statistical tests

2. regularization or shrinkage methods, such as the
Support Vector Machine, penalized regression methods
or boosting (some also perform variable selection)

3. dimension reduction or feature extraction, often using
partial least squares
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Books on classification

Maindonald and Braun. Data Analysis and Graphics Using R

Hastie, Tibshirani, Friedman. The Elements of Statistical
Learning

Venables and Ripley. Modern Applied Statistics with S-Plus
(MASS)
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R packages

http://cran.r-project.org/web/views/MachineLearning.html

MASS: lda, qda

sda: LDA, DDA

class: knn

rpart: classification and regression trees (recursive
partitioning)

ipred: bagging

e1071: SVM

LogitBoost, mboost: boosting

randomForest: trees with bagging

MLinterfaces, CMA: wrapper for multiple methods
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In conclusion: A philosophical note

From Leo Breiman and Adele Cutler, creators of Random Forests
(RF):

RF is an example of a tool that is useful in doing
analyses of scientific data.

But the cleverest algorithms are no substitute for human
intelligence and knowledge of the data in the problem.

Take the output of random forests not as absolute truth,
but as smart computer generated guesses that may be
helpful in leading to a deeper understanding of the
problem.

This statement could apply to any classifier.
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