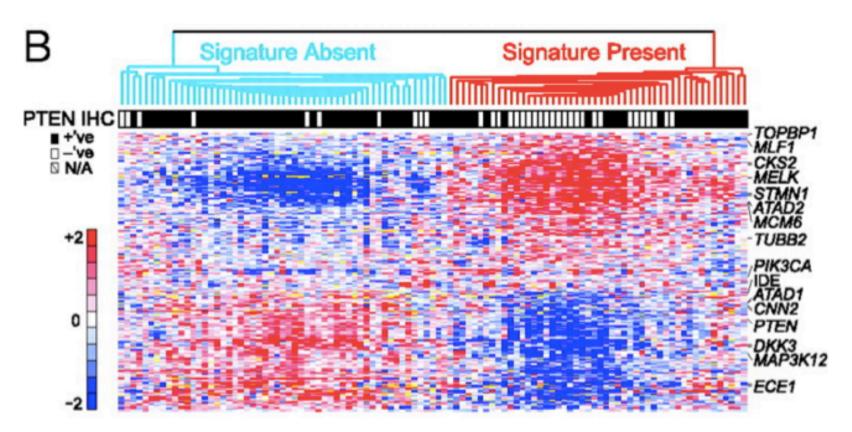
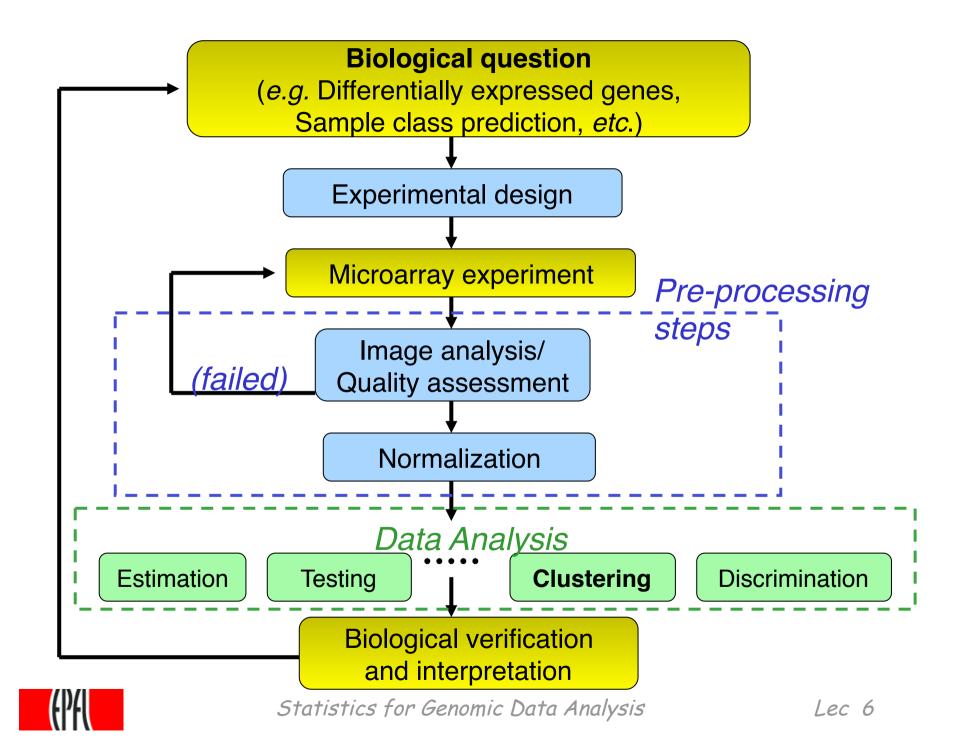
Statistics for Genomic Data Analysis

Cluster analysis



http://moodle.epfl.ch/course/view.php?id=15271

Statistics for Genomic Data Analysis



Classification

- Historically, *objects* are classified into *groups*
 - periodic table of the elements (chemistry)
 - taxonomy (zoology, botany)
- Why classify?
 - organizational convenience, convenient summary
 - prediction
 - explanation
- Note: these aims do not necessarily lead to the same classification; e.g. SIZE of object in hardware store vs. TYPE/USE of object

Classification, cont

- Classification divides objects into groups based on a set of values
- Unlike a theory, a classification is *neither true nor false*, and should be judged largely on the usefulness of results (Everitt)
- However, a classification (clustering) may be useful for suggesting a theory, which could then be tested

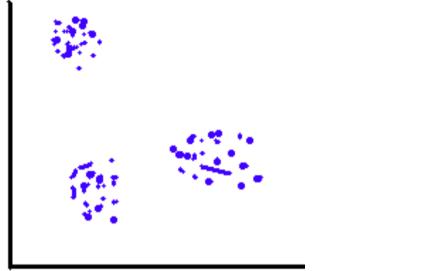
Classification

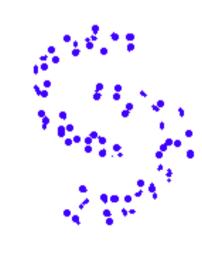
- Task: assign objects to classes (groups) on the basis of measurements made on the objects
- Supervised: classes are predefined, want to use a (training or learning) set of labeled objects to form a classifier for classification of future observations (discrimination analysis)
- Unsupervised: classes unknown, want to discover them from the data (cluster analysis)

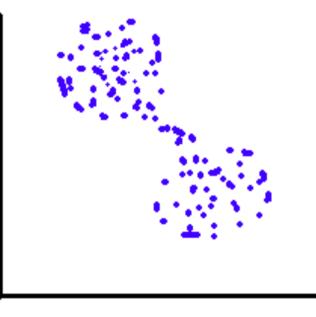
Cluster analysis

- Addresses the problem: Given n objects, each described by p variables (or *features*), derive a useful division into a number of classes
- Often want a *partition* of objects
 - But also 'fuzzy clustering'
 - Could also take an exploratory perspective
- 'Unsupervised learning'
- Most clustering is not statistical

Difficulties in defining 'cluster'







Statistics for Genomic Data Analysis

Clustering Gene Expression Data

- Can cluster genes (rows), e.g. to (attempt to) identify groups of co-regulated genes
- Can cluster samples (columns), e.g. to identify tumors based on profiles
- Can cluster *both* rows and columns at the same time

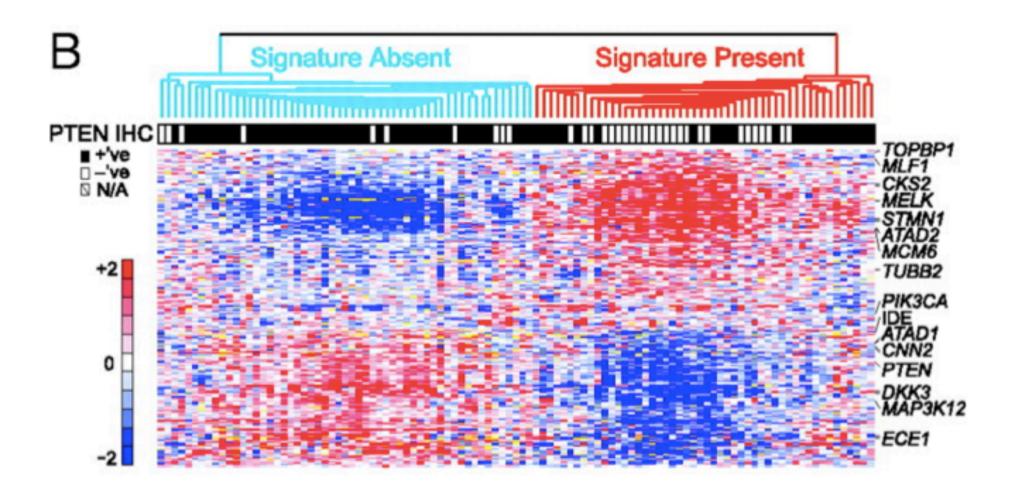
Clustering Gene Expression Data

- Leads to readily interpretable figures
- Can be helpful for identifying patterns in time or space
- Useful (essential?) when seeking new subclasses of samples
- Can be used for exploratory, quality assessment purposes

Visualizing Gene Expression Data

- Dendrogram (tree diagram)
- Heat Diagram (heatmap)
 - available as R function heatmap()
- Need to reduce number of genes first for figures to be legible/interpretable (at most a few hundred genes, not a whole array)
- A visual representation for a given clustering (e.g. dendrogram) is *not unique*
- Beware the influence of representation on apparent structure (e.g. color scheme)

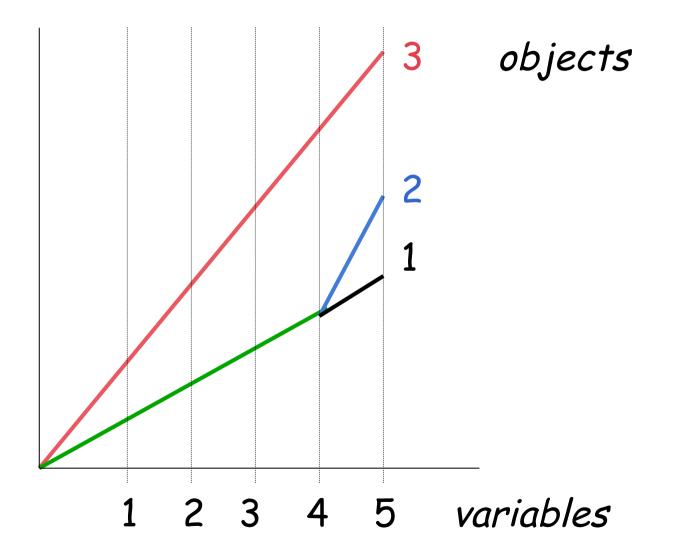
Cluster visualization



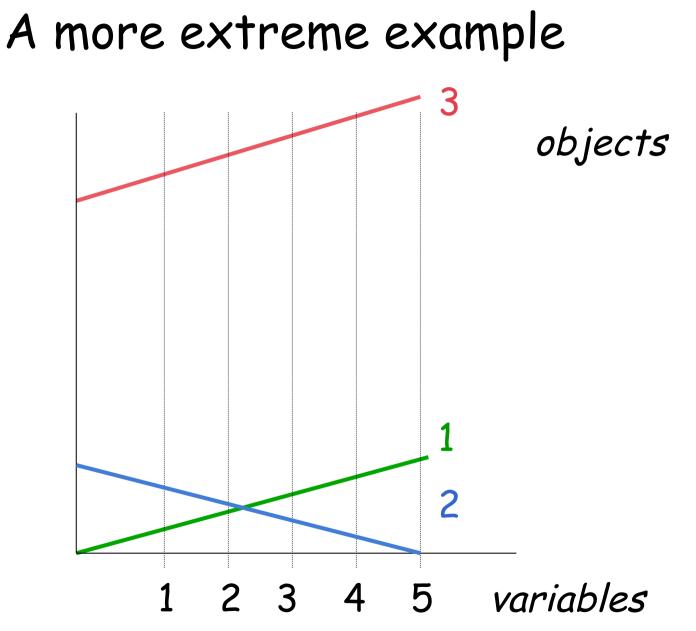
Similarity

- Similarity s_{ij} indicates the strength of relationship between two objects i and j
- Usually 0 ≤ s_{ij} ≤1
- Correlation-based similarity ranges from -1 to 1
- Use of (1-)*correlation-based similarity* is quite common in gene expression studies but is in general contentious...

Problems using correlation



Statistics for Genomic Data Analysis

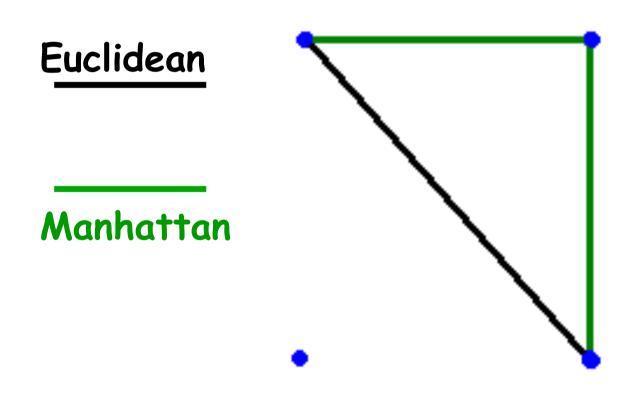


Statistics for Genomic Data Analysis

Dissimilarity and Distance

- Associated with similarity measures s_{ij} bounded by 0 and 1 is a *dissimilarity* d_{ij} = 1 - s_{ij}
- Distance measures have the metric property $(d_{ij} + d_{ik} \ge d_{jk})$
- Many examples: Euclidean ('as the crow flies'), Manhattan ('city block'), etc.
- Distance measure has a large effect on performance
- Behavior of distance measure related to scale of measurement

Distance example



What distance should I use?

- This is like asking: What tool should I buy?
- It depends on what similarities you are interested in finding
- With Euclidean distance, larger values will tend to dominate; not useful if large value is simply a result of using smaller units (*e.g.*, grams vs Kilos)
- Can get around this (if desired) by scaling or standardizing variables
- Can also scale variables in arbitrary directions (rather than axis directions) using Mahalanobis distance
 √(x-y)^TS⁻¹(x-y); usually S = cov. matrix

Partitioning Methods

- Partition the objects into a prespecified number of groups K
- Iteratively reallocate objects to clusters until some criterion is met (e.g. minimize within cluster sums of squares)
 - k-means
 - self-organizing maps (SOM)
 - partitioning around medoids (PAM; more robust and computationally efficient than kmeans)
- Sometimes model-based clustering

Statistics for Genomic Data Analysis

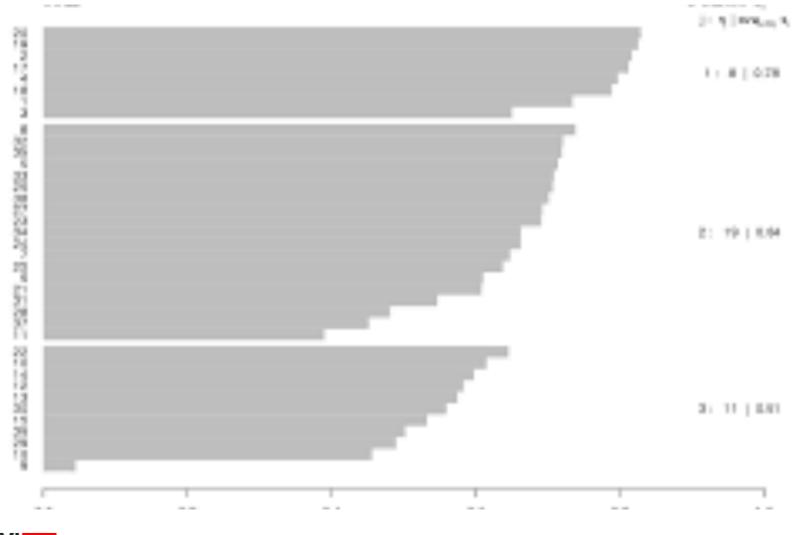
PAM - silhouette

- A measure is calculated for each observation to see how well it fits in assigned
- This is done by comparing how close the object is to other objects in *its own cluster* with how close it is to objects in *other clusters*
- Values near 1: observation is well placed; near 0: likely the obs might really belong in another cluster
- Value displayed from smallest to largest (within cluster)

Average silhouette width

- Summary measure : Average Silhouette Width
- Interpretation:
 - 0.71-1.0 : strong structure
 - 0.51-0.70 : reasonably strong structure
 - 0.26-0.50 : weak structure, could be artificial
 - < 0.25 : No substantial structure found
- Number of clusters estimated by optimum average silhouette width

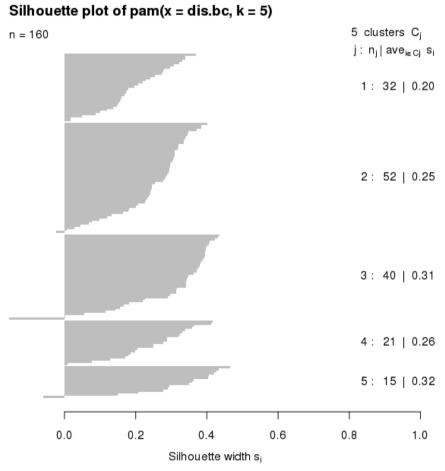
Example: 3 clusters



Statistics for Genomic Data Analysis

Lec 6

Example: 5 clusters



Average silhouette width: 0.26

Statistics for Genomic Data Analysis

Lec 6

Hierarchical Clustering

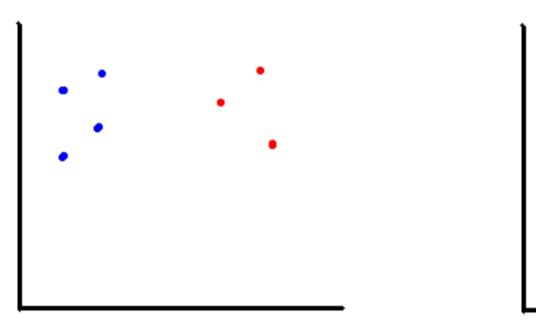
- Produce a *dendrogram* (tree diagram)
- Avoid prespecification of the number of clusters K
- The tree can be built in two distinct ways:
 - Bottom-up: *agglomerative* clustering
 - Top-down: *divisive* clustering

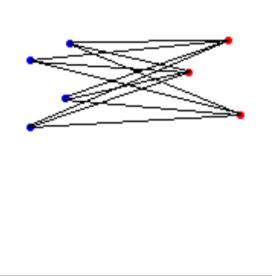
Agglomerative Methods

- Start with n mRNA sample (or G gene) clusters
- At each step, merge the two closest clusters using a measure of between-cluster dissimilarity
- Examples of *between-cluster* dissimilarities:
 - Average linkage (Unweighted Pair Group Method with Arithmetic Mean (UPGMA)): average of pairwise dissimilarities
 - *Single-link (NN):* min of pairwise dissimilarities
 - Complete-link (FN): max of pairwise dissimilarities
 - Ward's method: min information loss

Statistics for Genomic Data Analysis

Between cluster distances: avg, NN, FN





Ward's method

 Distance between two clusters is how much the sum of squares will increase when merged:

$$\Delta(A,B) = \sum_{i \in A \cup B} \|\vec{x}_i - \vec{m}_{A \cup B}\|^2 - \sum_{i \in A} \|\vec{x}_i - \vec{m}_A\|^2 - \sum_{i \in B} \|\vec{x}_i - \vec{m}_B\|^2$$
$$= \frac{n_A n_B}{n_A + n_B} \|\vec{m}_A - \vec{m}_B\|^2$$

- where m_j is the center of cluster j, n_j is the number of points in it
- Δ = *merging cost* of combining clusters A and B
- Given two pairs of clusters whose centers are equally far apart, Ward's method prefers to merge the smaller ones

Divisive Methods

- Start with only one cluster
- At each step, *split* clusters into two parts
- Advantage: Obtain the main structure of the data (*i.e.* focus on upper levels of dendrogram)
- Disadvantage: Computational difficulties when considering all possible divisions into two groups

Partitioning vs. Hierarchical

Partitioning

- Advantage: Provides clusters that satisfy some optimality criterion (approximately)
- Disadvantages: Need initial K, long computation time
- Hierarchical
 - Advantage: Fast computation (agglomerative)
 - Disadvantages: Rigid, cannot correct later for erroneous decisions made earlier

R: clustering

- A number of R packages contain functions to carry out clustering, including:
 - -stats: hclust
 - cluster (Kaufman and Rousseeuw)
 - fpc
 - -mclust
 - **E1071**
- And many more!

Generic Clustering Tasks

- Estimating number of clusters
- Assigning each object to a cluster
- Assessing strength/confidence of cluster assignments for individual objects
- Assessing cluster homogeneity
- (Interpretation of the resulting clusters)

Estimating how many clusters

- Many suggestions for how to decide this!
- Indices based on homogeneity and/or separation (within and between cluster sums of squares)
- Milligan and Cooper (Psychometrika 50:159-179, 1985) studied performance of 30 such methods in a large simulation
- R package fpc (Christian Hennig) has function cluster.stats which computes many of these

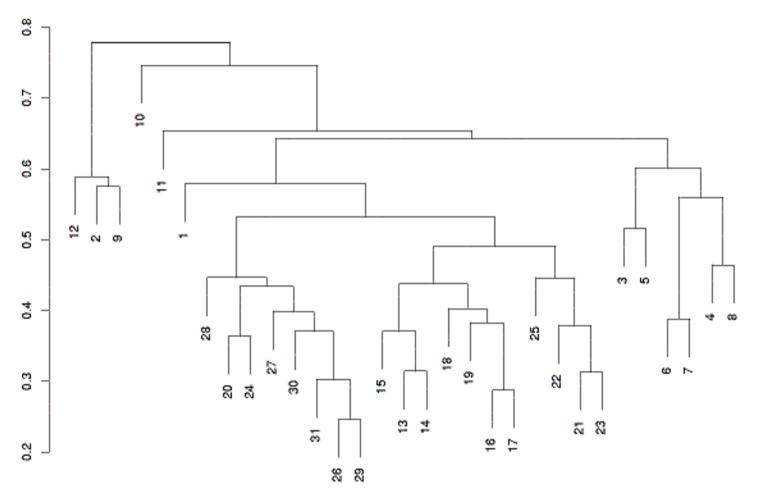
Additional methods

- Model-based criteria (AIC, BIC, MDL) when using model-based clustering
- GAP, GAP-PC (Tibshirani et al.)
- Average silhouette width (Kaufman and Rousseuw)
- mean silhouette split (Pollard and van der Laan)
- clest (Dudoit and Fridlyand)

Example: Bittner et al.

It has been proposed (by many) that a *cancer taxonomy* can be identified from *gene expression experiments*.

- 31 melanomas (from a variety of tissues/cell lines)
- 7 controls
- 8150 cDNAs
- 6971 unique genes
- 3613 genes 'strongly detected'

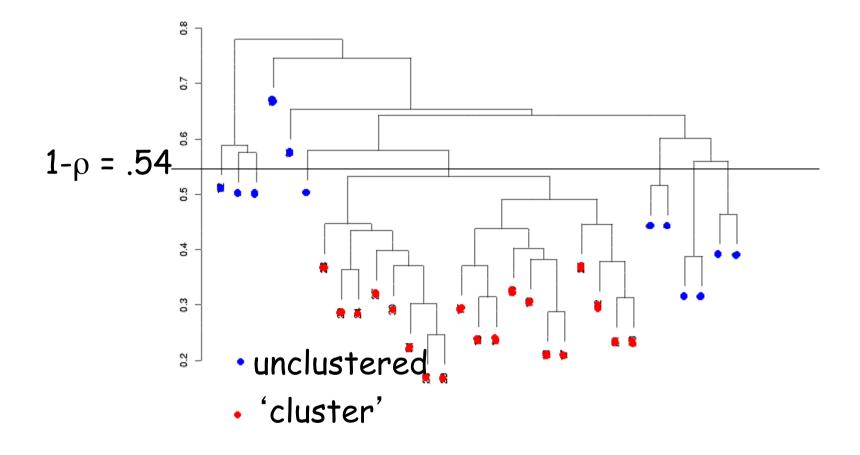


Average linkage hierarchical clustering, melanoma only

How many clusters are present?

Statistics for Genomic Data Analysis

Average linkage, melanoma only



Issues in Clustering

- Pre-processing (Image analysis and Normalization)
- Which variables are used
- Which samples are used
- Which *distance measure* is used
- Which *algorithm* is applied
- How to decide the number of clusters K

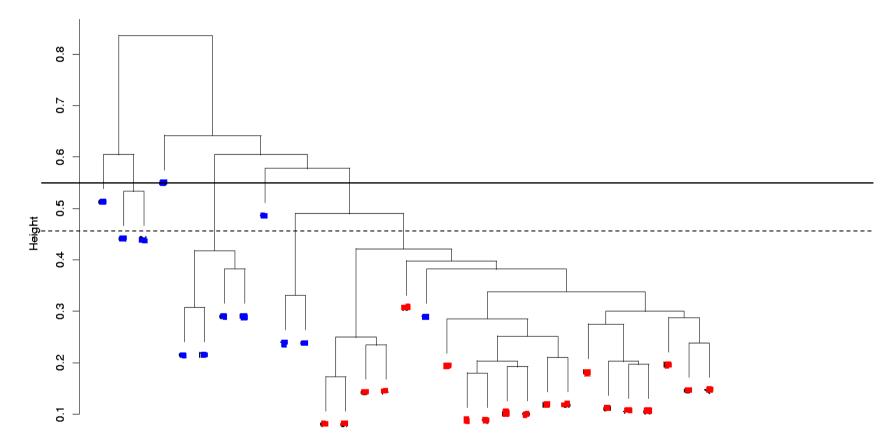
Issues in Clustering

- Pre-processing (Image analysis and Normalization)
- Which genes (variables) are used
- Which samples are used
- Which distance measure is used
- Which algorithm is applied
- How to decide the number of clusters K

Filtering Genes

- All genes (i.e. don't filter any)
- At least k (or a proportion p) of the samples must have expression values larger than some specified amount, A
- Genes showing 'sufficient' variation
 - a gap of size A in the central portion of the data
 - a interquartile range of at least B
 - 'large' SD, CV, ...

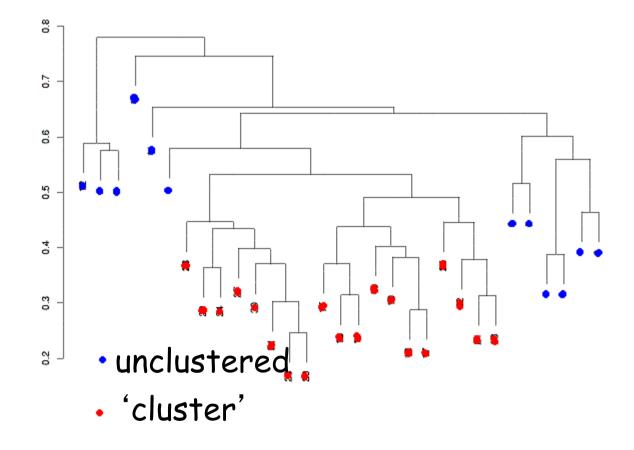
Average linkage, top 300 genes in SD



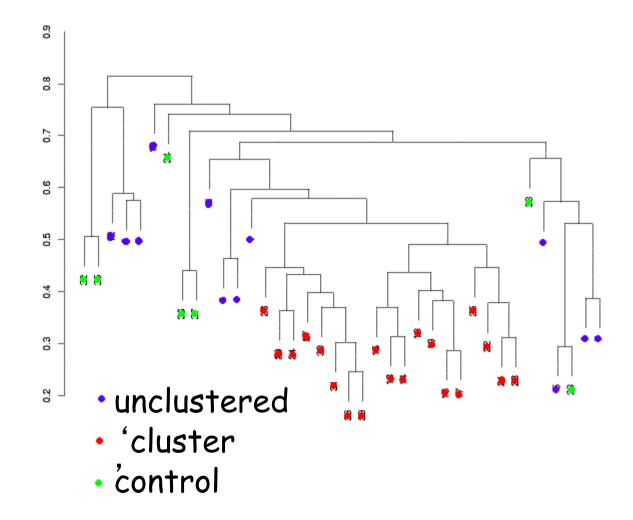
Issues in Clustering

- Pre-processing (Image analysis and Normalization)
- Which genes (variables) are used
- Which samples are used
- Which distance measure is used
- Which algorithm is applied
- How to decide the number of clusters K

Average linkage, *melanoma only*

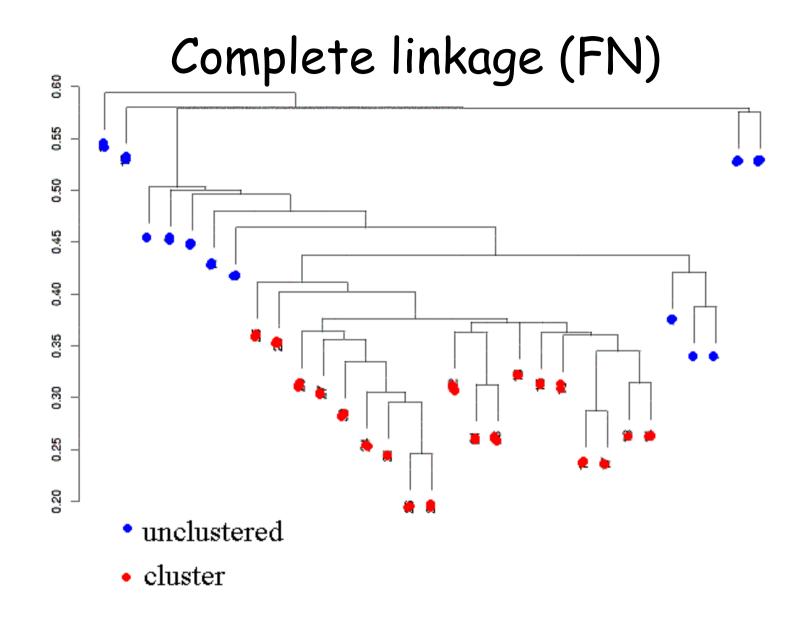


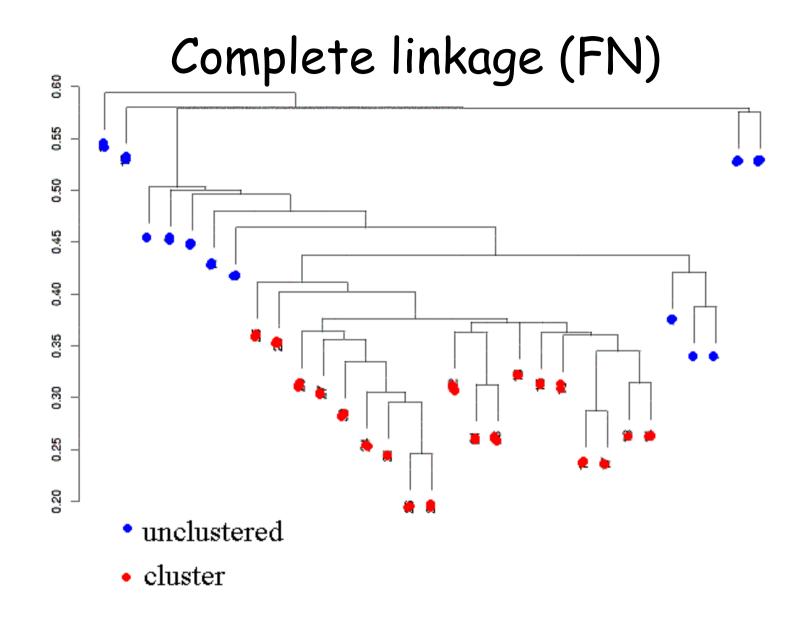
Average linkage, *melanoma & controls*

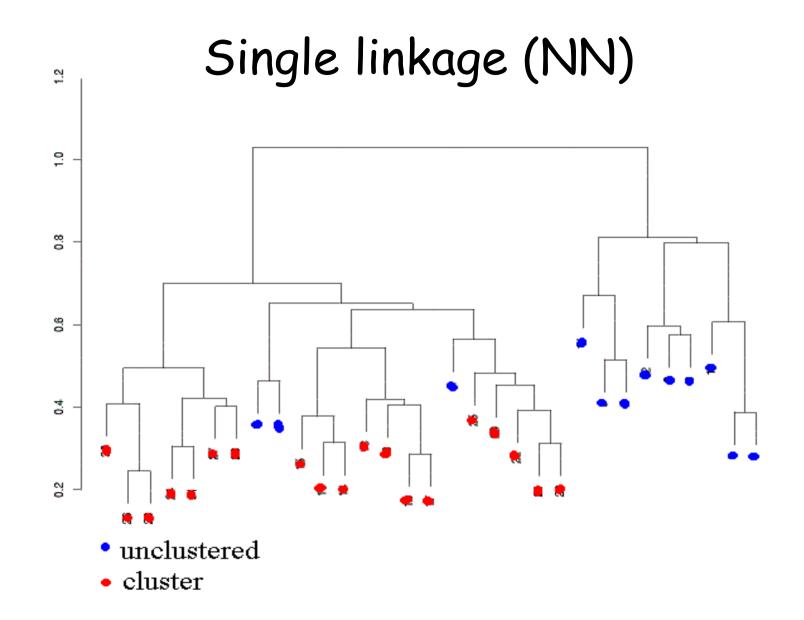


Issues in clustering

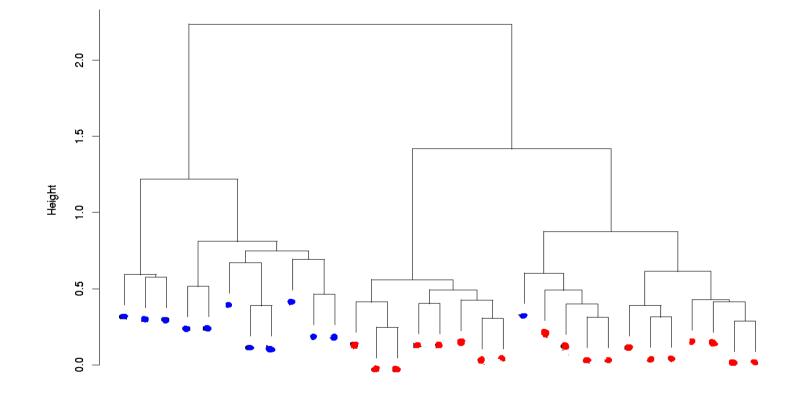
- Pre-processing
- Which genes (variables) are used
- Which samples are used
- Which distance measure is used
- Which algorithm is applied
- How to decide the number of clusters K





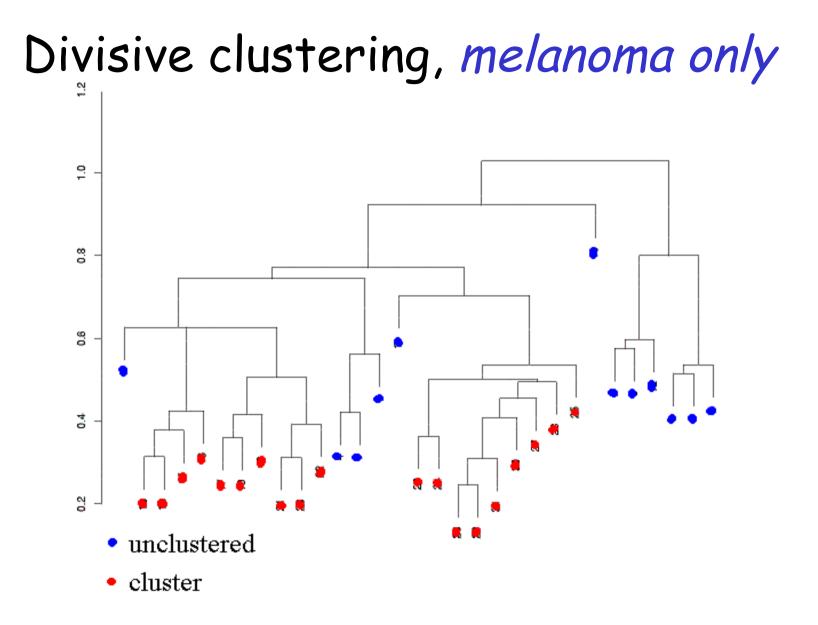


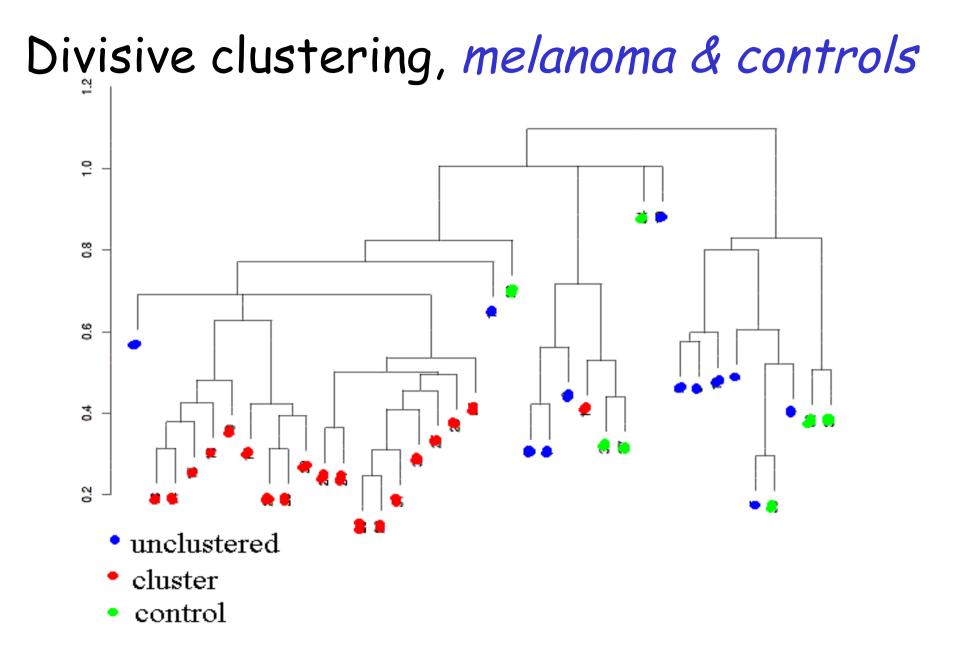
Ward's method (information loss)



Issues in clustering

- Pre-processing
- Which genes (variables) are used
- Which samples are used
- Which distance measure is used
- Which algorithm is applied
- How to decide the number of clusters K





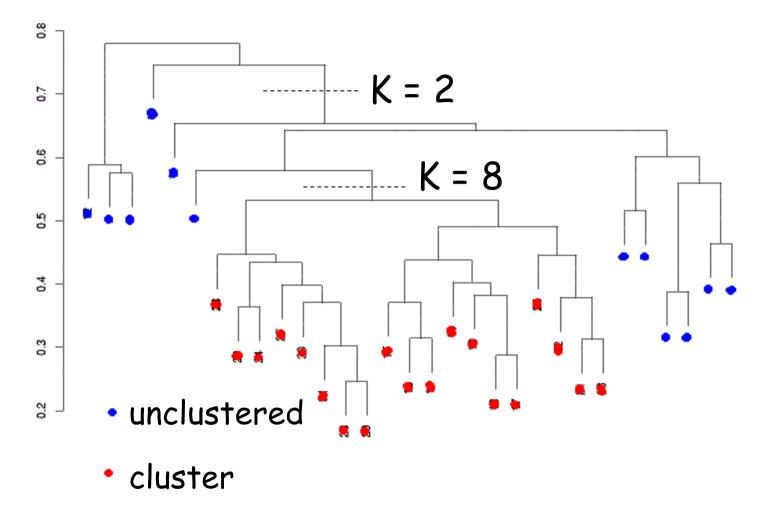
Issues in clustering

- Pre-processing
- Which genes (variables) are used
- Which samples are used
- Which distance measure is used
- Which algorithm is applied
- How to decide the number of clusters K

How many clusters K?

- Applying several methods yielded estimates of
 - K = 2 (largest cluster has 27 members)
 - to K = 8 (largest cluster has 19 members)

Average linkage, melanoma only



Association of Variables

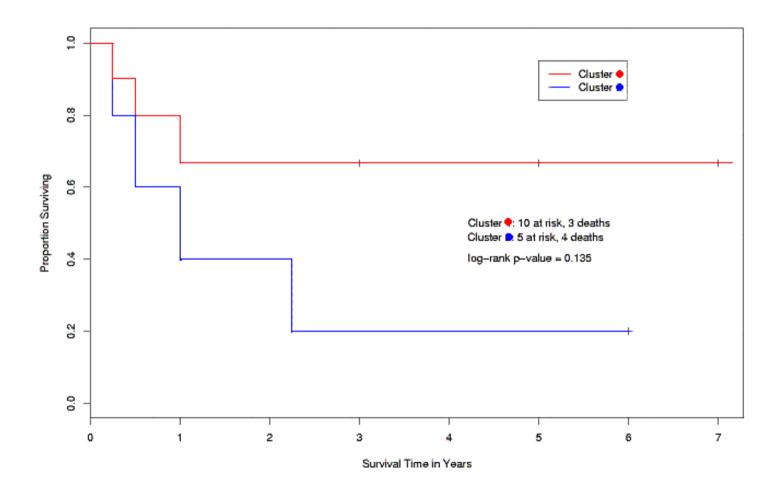
- Variables tested for association with cluster:
 - Sex (p = .68, n = 16 + 11 = 27)
 Age (p = .14, n = 15 + 10 = 25)
 Mutation status (p = .17, n = 12 + 7 = 19)
 - Biopsy site (p = .88, n = 14 + 10 = 24)
 - Pigment (p = .26, n = 13 + 9 = 22)
 - Breslow thickness (p = .26, n = 6 + 3 = 9)
 - Clark level (p = .44, n = 6 + 5 = 11)

Specimen type (p = .11, n = 11 + 12 = 23)

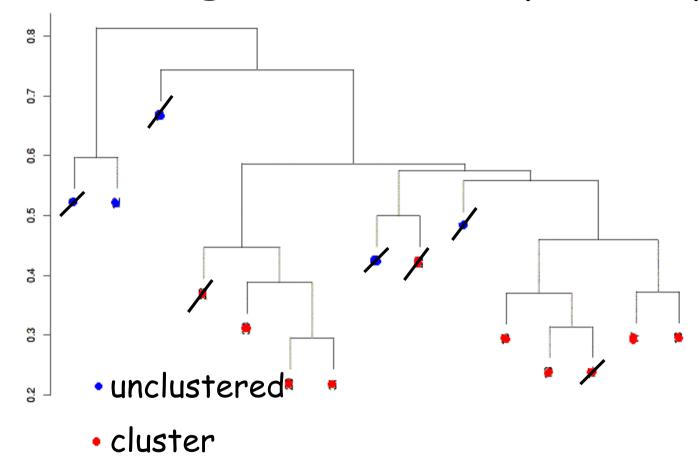
Survival analysis: Bittner et al.

- 15 of the 31 melanomas had associated survival times
- Bittner et al. also looked at differences in survival between the two groups (the 'cluster' and the 'unclustered' samples)
- 'Cluster' seemed associated with longer survival

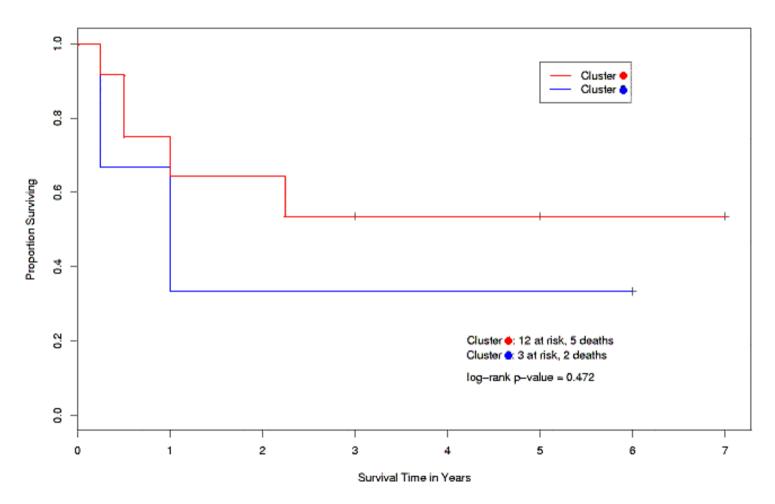
Kaplan-Meier Survival Curves



Average Linkage Hierarchical Clustering, survival samples only



Kaplan-Meier Survival Curves, new grouping



Identification of Genes Associated with Survival

For each gene *j*, *j* = 1, ..., 3613, model the *instantaneous failure rate*, or hazard function, *h(t)* with the Cox proportional hazards model:

 $h(t) = h_0(t) \exp(\beta_j x_{ij})$

and look for genes with *both* :

- large effect size β_i
- large *standardized* effect size $\hat{\beta}_j$ /SE($\hat{\beta}_j$)



Standardized Cox Regression Coefficient vs. Coefficient

|b| = absolute estimated coefficient

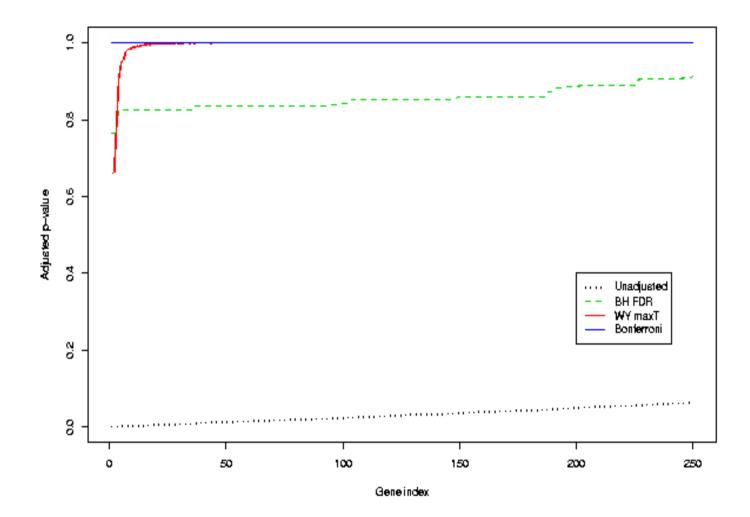
Sites Potentially Influencing Survival

Image Clone ID	UniGene Cluster	UniGene Cluster Title
137209	Hs.126076	Glutamate receptor interacting protein
240367	Hs.57419	Transcriptional repressor
838568	Hs.74649	Cytochrome c oxidase subunit Vlc
825470	Hs.247165	ESTs, Highly similar to topoisomerase
841501	Hs.77665	KIAA0102 gene product

Findings

- Top 5 genes by this method not in Bittner et al. 'weighted gene list' - Why?
- weighted gene list based on entire sample; our method only used half
- weighting relies on Bittner et al. cluster assignment
- other possibilities?

Statistical Significance of Cox Model Coefficients



Advantages of Modeling

- Can address questions of interest directly
 - Contrast with what has become the 'usual' (and indirect) approach with microarrays: clustering, followed by tests of association between cluster group and variables of interest
- Great deal of existing machinery
- Quantitatively assess strength of evidence

Limitations of Single Gene Tests

- May be too noisy in general to show much
- Do not reveal coordinated effects of positively correlated genes
- Hard to relate to pathways

Not Covered...

- Careful followup
 - Assessment of *proportionality*
 - Inclusion of *combinations* of genes, interactions
 - Consideration of alternative models
- Power assessment
 - Not worth it here, there can't be much!

Summary

- Buyer beware results of cluster analysis should be treated with GREAT CAUTION and ATTENTION TO SPECIFICS, because...
- Many things can vary in a cluster analysis
- If covariates/group labels are known, then clustering is usually inefficient

