Statistics for Genomic Data Analysis

Experimental design, Linear models
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Replication, Randomization, Blocking

= These are the 'big three' of experimental design

= Replication - to reduce random variation of the
test statistic, increases generalizability

= Randomization - to remove bias
= Blocking - to reduce unwanted variation

= Tdea here is that units within a block are similar
to each other, but different between blocks

= 'Block what you can, randomize what you cannot’
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Some Considerations for
Microarray Experiments (I)

Scientific (Aims of the experiment)

= Specific questions and priorities

= How will the experiments answer the questions

Practical (Logistic)

= Types of mRNA samples: reference, control,
treatment, mutant, etfc

= Source, amount of material (tissues, cell lines)

= Number of slides available (amount of money!)
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Some Considerations for
Microarray Experiments (II)

Other Information

= Experimental process prior to hybridization
sample isolation, mMRNA extraction,
amplification, labelling,...

= Controls planned: positive, negative, ratio,
eftc.

= Verification method: Northern, RT-PCR, in
situ hybridization, etc.
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What is a pilot study?

= A pilot study is a small scale version of a
full, larger experiment

= Usually, the pilot sample size is much
smaller than for the full experiment

= Carried out before the full experiment
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Pilot studies

Small scale version of an experiment

Sample size much smaller than for full experiment
Carried out before the full experiment to be sure
the question makes sense in the system you will be
studying

To be sure the technigues work

- Practice, standardize techniques

- identify problems and look for solutions

To obtain preliminary data

- practice for statistical analyses

- see if planned experiment size sufficient
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More reasons to do a pilot study

= Gives a relatively low-cost, quick indication
of the likely outcome of the full experiment

= Determining what resources (finance, staff)
are needed for the planned study

= Further development or refinement of
research questions and research plan

= Training researcher/experimentalist in as
many elements of the process as possible

= Convincing funding bodies, other research
colleagues that the main study is feasible
and worth funding
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Pilot Study - limitations

= Possibility of making inaccurate predictions or
assumptions on the basis of pilot data

- successful pilot does not guarantee success
in the full study

- pilot based on small sample size
= Might not find all potential difficulties
= Problems arising from ‘contamination

- data from the pilot study are included in the
main results, OR

- pilot participants included in the main study,
but new data are collected from them

(i



Replication

= Why?
- To reduce variability
- To increase generalizability

= What is it?
- Duplicate spots/probes
- Duplicate slides
» Technical replicates - usually less desirable
* Biological replicates
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Biological and Technical Replicates

= Biological replication:
- multiple cases per group are studied
- is ESSENTIAL

= Technical replication:

- RNA sample from one case hybridized to
multiple arrays

- provides information about variability of
the labeling, hybridization and
quantification processes
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Triplicates preparation:

1 cell pool

1 RNA extraction
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Triplicates preparation:

1 cell pool

3 RNA extraction
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Triplicates preparation:

3 cell pools
1 RNA extraction

from each
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Replication - Sample size

Statistical considerations:

= Variance of individual measurements
= Effect size(s) to be detected

= Acceptable false positive rate

= Desired power (probability of detecting an effect of at
least the specified size)

Practical considerations:
= Cost
= Difficulty of obtaining samples

= More difficult than usual, as there are 1,000s of possible
changes, each with its own SD

Bottom line: As many as you can get! (within reason)
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Replication vs. pooling

= mRNA from different samples are sometimes
combined to form a pooled sample (or pool)

- If each sample doesn't yield enough mRNA
- To compensate an excess of variability
= Pooling may be OK if properly done:
- Combine several samples in each pool
- Use several pools from different samples

= Do NOT use pools when individual information is
important (e.g. paired designs, classification)

= Never substitute sampling by pooling:
- A pool of 3 individuals # 3 individual samples
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Examples of pooling

= Study with 12 patients : 12 chips = Expensive
= Option 1
- Group A: 6 individuals -> 1 pool of 6 -> 1 chip
- Group B: 6 individuals -> 1 pool of 6 ->1 chip
= Option 2:
- Group A: 12 individuals -> 4 pools of 3 -> 4 chips
- Group B: 12 individuals -> 4 pools of 3 -> 4 chips
= Option 2 may have similar precision to full expt.

= (But cannot know for certain without info about
variability between individuals and within pools)
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Confounding

= Idedlly, both the treatment and control
groups are exactly alike in all respects
(except for group membership)

= A confounding factor (or confounder) is
associated with both the group membership
and the response

= Reduce/remove effects of confounders
through randomization and blocking

= Example: shoe size + literacy (5 -1 @\@/@
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Confounding - genomic example

= Nature Genetics 39, 226 - 231 (2007)

Common genetic variants account for differences in
gene expression among ethnic groups

Richard S Spielmanl, Laurel A Bastone?, Joshua T Burdick®, Michael Morley3, Warren ] Ewens? &
Vivian G Cheung!*>
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78% of genes
'differentially expressed’
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Confounding factor: time

= Time of hybridization confounded with
population membership:
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Re-analysis - NO DE (Il)
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Randomization

= Especially important in larger experiments

- e.g. many samples, different techs, long
time, ...

» Randomization - to remove bias

- Would like to 'even out' confounders
between groups

- Do NOT process all your control samples on
one day and all the treatments on another
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Without randomization

Experimental units  Treatments

Without
randomization,
2 confounding variable
g differs among
E treatments
3
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With randomization

Experimental units Treatments

With randomization,
confounding variable
does not differ
among treatments

Confounding variable
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(BREAK )
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Blocking (local control)

= Blocking consists of grouping similar individuals
(experimental units)

= The idea is that individuals within a block are
more similar than are individuals between blocks
- e.g., drug treatment given to men and women
- randomize separately within blocks

= Reduce unwanted variation and gain precision
- Example: using chips from the same batch

= Must know the blocking factor(s) in advance

= 'Block what you can, randomize what you cannot’
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Example - blocking

= 20 males, 20 females

= Half to be treated, half left untreated
= Can only work on 4 individuals per day

= Question:

- How to assign individuals to treatment
groups and to days?
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A poor design (why??)

Week One Week Two
M Tu W Th F M Tu W Th F
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A better design (why??)

Week One Week Two
M Tu W Th F M Tu W Th F
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Reducing technical variability and
avoiding confounding

= Attempt to reduce technical variability and
avoid confounding in a study

= If possible, sample collection, RNA extraction
and labeling of all samples should be performed
by the same individual at the same time of day
using the same protocol and reagents

= If samples become available at different times,
consider freezing then processing together

= If possible, arrays should be used from a single
manufacturing batch and processed by one
technician on the same day
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Typical example of batch effect -
completely replicated experiment

Boxplots of log2 PM probe intensities
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Dealing with batch effects and other
technical artifacts

= Nature Reviews Genetics 11, 733-739

OPINION

Tackling the widespread and
critical impact of batch effects
In high-throughput data

Jeffrey T. Leek, Robert B. Scharpf, Héector Corrada Bravo, David Simcha,
Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly
and Rafael A. Irizarry
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Experimental design solutions

= Careful study design

- distribute batches and other potential
sources of experimental variation across
biological groups

- record information about personnel,
reagents, sample storage and labs

= Large experiments/experiments carried out
over a long time period most susceptible (but
smaller studies not immune)
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Statistical solutions

= Exploratory analyses to identify and
quantify batch effects (and other technical

artifacts)

= Adjust later ('downstream’) statistical
analyses to account for these unwanted

effects

= Carry out diagnostic analyses - did the
adjustment work?
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Dealing with batch effects - summary

Exploratory analyses

Hierarchically cluster the samples and label them with biological variables and batch surrogates (such as
laboratory and processing time)

Plot individual features versus biological variables and batch surrogates

}

Calculate principal components of the high-throughput data and identify components that correlate
with batch surrogates

Downstream analyses

Do you believe that measured batch surrogates (processing time, laboratory, etc.) represent the only
potential artefacts in the data?

Yesl 1No

Use measured technical variables as surrogates | | Estimate artefacts from the high-throughput data
for batch and other technical artefacts || directly using surrogate variable analysis (SVA)

l 1

Perform downstream analyses, such as regressions, t-tests or clustering, and adjust for surrogate or
estimated batch effects. The estimated/surrogate variables should be treated as standard covariates,
such as sex or age, in subsequent analyses or adjusted for use with tools such as ComBat

Diagnostic analyses

Use of SVA and ComBat does not guarantee that batch effects have been addressed. After fitting
models, including processing time and date or surrogate variables estimated with SVA, re-cluster the
data to ensure that the clusters are not still driven by batch effects

Nature Reviews | Genetics
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Some common experiments

= Comparison of 2 conditions/types
(“treatment vs. control’)

- mutant vs. wild type plants

- liver vs. heart in mouse
= Comparison of many treatments to a control
= Clinical studies (e.g. cancer patients)

= Time course - measurements at different
times

= Factorial study - multiple conditions varied
and studied simul/taneously
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Factorial crossing

= Compare 2 (or more) sets of conditions in the
same experiment

= Designs with factorial treatment structure
allow you to measure interaction between two
(or more) sets of conditions that influence
the response

= Factorial designs may be either observational
or experimental
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Replication in factorial experiment

= One observation per cell (combination of levels of factor
A and factor B)
- can estimate full model parameters but no df left over

for inference
- can assume no interaction - assess graphically

= More than one observation per cell

- when all n; = n (balanced design) the design is
orthogonal

- orthogonality can also occur if row/column cell
numbers are proportional

- orthogonality is good - most precise estimation and
easiest to interpret parameters

= Bottom line: design with equal replicates usually best
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Balanced vs. Unbalanced
Experimental Designs

= Balanced design: Cell sample sizes are
proportional (maybe equal)

= Explanatory variables have zero relationship
to one another

= Numerator SS in ANOVA are independent
=> order of variables in model doesn't matter

= Most experimental studies are designed this
way - analysis is most simple

= As soon as somebody drops a test tube, it's
no longer (exactly) truel

(i



Analysis of unbalanced data

= When explanatory variables are related,
there is potential ambiguity

- Aisrelatedto Y, Bis related to Y, and A is
related to B

- Which variable gets credit for the portion of
variation in Y that could be explained by either
A or B?

= Order of variables in model fitting makes a
difference

= Analysis more complicated, messy
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Gene expression data

Data on & genes for n samples:

mRNA samples

sample1 sample2 sample3 sample4 sample5 ...
0.46 0.30 0.80 1.51 0.90
-0.10 0.49 0.24 0.06 0.46
0.15 0.74 0.04 0.10 0.20
-0.45 -1.03 -0.79 -0.56 -0.32
-0.06 1.06 1.35 1.09 -1.09

Genes

oD =

Gene expression level of gene i in mRNA sample j

= (normalized) Log,( Red intensity / Green intensity)
or: RMA value
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Linear models

= TIn statistics, a 'linear model’ refers to a model
that is /inear in the parameters

= Which are linear models?

I, Y=Byg+PBix+e¢

2. Y=Bp+ B X+P,x°+c¢
3. Y=PBp+Pex+c¢

4, Y=oua+ePx+¢g

5. Y = xebxe
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Linear models

= Simplest version: comparing single freatment
(T) to single control (C)

yC:“’-'-SC'. G:yC
yT:M"'(l"'ST;a:yT-yC

= With multiple observations, the estimates are
averages (or differences of averages)

= Readily extends to more than 2 conditions
= Matrix notation
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Linear modeling

= Simple regression model:

Vi = Bo + B1 X X; + &
response variable = population =+ population x predictor + error
intercept slope variable
itercept term slope term
model

Multiple regression model:

Vi = Po + P1xl; +Pox2; + ... + &

Anova model:
Vij = p+Br(dummyy);; + Ba(dummys)ij+ ... +€;;
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Effects model

= Anova model more typically expressed as an

Vij :]l‘l'O(,'-i-E,'j

effects model :
Y dummy; dummy, dummys
2 1 0 0
3 1 0 0
- 1 0 0
6 0 1 0
7 0 1 0
8 0 1 0
10 0 0 1
11 0 0 1
12 0 0 1

(i

design matrix =
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Set y to zero

Vij = O 1 &j i ]
model matrix oo
(three groups) — o L0
0 0 1
Parameter Estimates Null hypothesis
0l mean of group 1 (#;) Hp: jt1 =0
02 mean of group 2 (#2) Hop: jto =0
03 mean of group 3 (u3) Hp: ji3 =0
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Treatment contrasts

over-parameterized design matrix

contrast matrix

model matrix

Intercept o4 (05) 03
(1) (G (G2) (G3) 05 03 Intercept 03 03
| 1 0 0 Gl | O 0 | 0 0
| 0 1 0 G2 | 1 0 = | | 0
1 0 0 | G3 |0 1 | 0 1
Parameter Estimates Null hypothesis
Intercept mean of “control” group (1) Ho: p=p1 =0
0 mean of group 2 minus mean of ‘control” group Ho: 05 =p2 —p1 =0
(12 — 1)
03 mean of group 3 minus mean of ‘control” group Hop: 03 =p3 —p1 =0
(13 — 1)
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Sum to zero contrasts

over-parameterized design matrix contrast matrix model matrix
Intercept o4 (05) 03
(70) (G1) (G2) (G3) o 05 Intercept 0o 05
1 1 0 0 Gl 1 0 1 1 0
1 0 1 0 x G2 0 1 = 1 0 1
1 0 0 1 G3 | —1 —1 1 —1 —1
Parameter Estimates Null hypothesis
Intercept  mean of group means (yt;= / p) Ho: p=pq/p=0
o mean of group 1 minus mean of group means Hoy: 0 = p1 — (ytg/p) =0
(1 = (ptq/P))
0Lp mean of group 2 minus mean of group means Hoy: 0 = > — (ytg/p) =0

(12— (1q/P))
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Typical analysis using 1imma

= Read in data

= Create design matrix

= Create contrast matrix (if needed)
= Fit model

= Make comparisons

= Output interesting results
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Design Matrix and Contrasts

= The design matrix indicates the hybs (which
RNA hybridized to each array)

= The contrasts are the comparisons of interest

= Making the design matrix for common
reference or single color arrays is the same as
for ordinary regression/anova

= (more involved for (2-color) direct designs)
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Design matrix for 2 group comparison

= Predictors are (unordered) factors
- tumor/normal

- experimental/control
- mutant/wild type
= Decide on model, THEN create design matrix

- Do NOT create desigh matrix and then figure
out what the model is (I!)

- Design model to reflect hypotheses of interest

= Tip: when straightforward, parameterize the
model in ferms of comparisons of interest
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Example: 3 fumor/3 normal samples

= Parameterization:
- Y = tumor (1_tumor) + normal(1_normal)

= Design matrix:

- by hand > mat <- cbind(c(1,1,1,0,0,0), ¢(0,0,0,1,1,1))
> dimnames (mat) <- list(paste("Sample", 1:6),
+ c("Tumor", "Normal"))
> mat

- Using model .matrix

> samps <- factor(rep(c("Tumor","Normal"), each = 3))
> model.matrix ("0 + samps)
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Design matrix for the parameterization
explicitly remove intercept ~.

> mat > model .matrix(~0 + samps)
Tumor Normal sampsNormal sampsTumor

Sample 1 1 0 1 0 1
Sample 2 1 0 2 0 1
Sample 3 1 0 3 0 1
Sample 4 0 1 4 1 0
Sample 5 0 1 5 1 0
Sample 6 0 1 6 1 0

attr(,"assign")

[1] 11

attr(,"contrasts")
attr(,"contrasts")$samps
[1] "contr.treatment"
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» Parameterization:

Different parameterization

- Y = intercept + (fum-norm)(1_tumor)

(i

> model .matrix (“samps) <

(Intercept) sampsTumor

g P W N =

6

attr(,
[1] ©
attr(,
attr(,

[1] "contr.treatment"

1

I

1

"assign")

1

"contrasts")

1

O O O = =

"contrasts")$samps

— intercept included
by default



Contrasts

= Linear combination of parameters
= Coefficients sum to zero
= Allows for comparison of different treatments

= Number of testable contrasts (rows in contrast
matrix) equals number of parameters

= Need contrast matrix when comparison of
interest is not a model parameter
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Example: 3 groups

= Control/treatment 1/treatment 2
= Compare each treatment to control

> contrast <- matrix(c(-1,1,0,-1,0,1), ncol = 2)

> dimnames (contrast) <- 1list(c("cont","trtl1",6 "trt2"),
+ c("trtl - cont",

+ "trt2 - cont"))

> contrast

trtl - cont trt2 - cont

cont -1 -1
trtl 1 0
trt2 0 1
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Example: 3 groups

= Control/treatment 1/treatment 2
= Compare treatment mean to control

> contrast <- matrix(c(-1,0.5,0.5), ncol = 1)

> dimnames (contrast) <- 1list(c("cont","trtl1",6 "trt2"),
+ "mean trt - cont")

> contrast

mean trt - cont

cont -1.0
trtl 0.5
trt2 0.5
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Linear models for microarray data

= Specify linear model by design matrix
- Rows correspond to arrays

- Columns correspond to coefficient
describing RNA sources

= Single channel (e.g. Affy chips) or common
reference design: need one coefficient for
each source type

= Fit model for each gene singly (ImFit)
= Borrow information across genes (eBayes)
= DE genes (topTable)
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