Statistics for Genomic Data Analysis

Experimental design; Linear models

Replication, Randomization, Blocking

- These are the 'big three' of experimental design
- <u>Replication</u> to reduce random variation of the test statistic, increases generalizability
- Randomization to remove bias
- <u>Blocking</u> to reduce unwanted variation
- Idea here is that units within a block are similar to each other, but different between blocks
- 'Block what you can, randomize what you cannot'

Some Considerations for Microarray Experiments (I)

Scientific (Aims of the experiment)

- Specific questions and priorities
- How will the experiments answer the questions
 Practical (Logistic)
- Types of mRNA samples: reference, control, treatment, mutant, etc
- Source, amount of material (tissues, cell lines)
- Number of slides available (amount of money!)

Some Considerations for Microarray Experiments (II)

Other Information

- Experimental process prior to hybridization sample isolation, mRNA extraction, amplification, labelling,...
- Controls planned: positive, negative, ratio, etc.
- Verification method: Northern, RT-PCR, in situ hybridization, etc.

What is a pilot study?

- A pilot study is a *small scale version* of a full, larger experiment
- Usually, the *pilot sample size is much* smaller than for the full experiment
- Carried out *before* the full experiment

Pilot studies

- Small scale version of an experiment
- Sample size much smaller than for full experiment
- Carried out *before* the full experiment to be sure the question makes sense *in the system you will be studying*
- To be sure the techniques work
 - Practice, standardize techniques
 - identify problems and look for solutions
- To obtain preliminary data
 - practice for statistical analyses
 - see if planned experiment size sufficient

Statistics for Genomic Data Analysis

More reasons to do a pilot study

- Gives a relatively *low-cost, quick indication* of the likely outcome of the full experiment
- Determining what *resources* (finance, staff) are needed for the planned study
- Further development or refinement of research questions and research plan
- Training researcher/experimentalist in as many elements of the process as possible
- Convincing funding bodies, other research colleagues that the main study is feasible and worth funding

Pilot Study - limitations

- Possibility of making *inaccurate predictions or* assumptions on the basis of pilot data
 - successful pilot does not guarantee success in the full study
 - pilot based on small sample size
- Might not find all potential difficulties
- Problems arising from 'contamination'
 - data from the pilot study are included in the main results, OR
 - pilot participants included in the main study, but new data are collected from them

Replication

- Why?
 - To reduce variability
 - To increase generalizability
- What is it?
 - Duplicate spots/probes
 - Duplicate slides
 - Technical replicates usually less desirable
 - Biological replicates

Biological and Technical Replicates

- Biological replication:
 - multiple cases per group are studied
 - is ESSENTIAL
- Technical replication:
 - RNA sample from one case hybridized to multiple arrays
 - provides information about variability of the labeling, hybridization and quantification processes

Statistics for Genomic Data Analysis

Replication - Sample size

<u>Statistical considerations</u>:

- Variance of individual measurements
- Effect size(s) to be detected
- Acceptable false positive rate
- Desired *power* (probability of detecting an effect of at least the specified size)

Practical considerations:

- Cost
- Difficulty of obtaining samples
- More difficult than usual, as there are 1,000s of possible changes, each with its own SD

Bottom line: As many as you can get! (within reason)

Replication vs. pooling

- mRNA from *different samples* are sometimes combined to form a *pooled sample* (or *pool*)
 - If each sample doesn't yield enough mRNA
 - To compensate an excess of variability
- Pooling may be OK if properly done:
 - Combine several samples in each pool
 - Use several pools from different samples
- Do NOT use pools when individual information is important (e.g. paired designs, classification)
- Never substitute sampling by pooling:
 - A pool of 3 individuals ≠ 3 individual samples !!

Examples of pooling

- Study with 12 patients : 12 chips = Expensive
- Option 1:
 - Group A: 6 individuals -> 1 pool of 6 -> 1 chip
 - Group B: 6 individuals -> 1 pool of 6 -> 1 chip
- Option 2:
 - Group A: 12 individuals -> 4 pools of 3 -> 4 chips
 - Group B: 12 individuals -> 4 pools of 3 -> 4 chips
- Option 2 may have similar precision to full expt.
- (But cannot know for certain without info about variability between individuals and within pools)

Confounding

- Ideally, both the treatment and control groups are exactly alike in all respects (except for group membership)
- A confounding factor (or confounder) is associated with both the group membership and the response
- Reduce/remove effects of confounders through randomization and blocking
- Example: shoe size + literacy $s \rightarrow L$

Confounding - genomic example

Nature Genetics 39, 226 - 231 (2007)

Common genetic variants account for differences in gene expression among ethnic groups

Richard S Spielman¹, Laurel A Bastone², Joshua T Burdick³, Michael Morley³, Warren J Ewens⁴ & Vivian G Cheung^{1,3,5}

78% of genes 'differentially expressed'

Confounding factor: time

Time of hybridization confounded with population membership:

Re-analysis - NO DE (!!)

Statistics for Genomic Data Analysis

Randomization

- Especially important in larger experiments
 - *e.g.* many samples, different techs, long time, ...
- Randomization to remove bias
 - Would like to 'even out' confounders between groups
 - Do NOT process all your control samples on one day and all the treatments on another

Without randomization

Without randomization, confounding variable *differs* among treatments

With randomization

With randomization, confounding variable *does not differ* among treatments

Blocking (local control)

- Blocking consists of grouping similar individuals (experimental units)
- The idea is that individuals within a block are more similar than are individuals between blocks
 - e.g., drug treatment given to men and women
 - randomize *separately* within blocks
- Reduce unwanted variation and gain precision
 - Example: using chips from the same batch
- Must know the blocking factor(s) in advance
- 'Block what you can, randomize what you cannot'

Example - blocking

- 20 males, 20 females
- Half to be treated, half left untreated
- Can only work on 4 individuals per day
- Question:
 - How to assign individuals to treatment groups and to days?

A poor design (why??)

A better design (why??)

Reducing technical variability and avoiding confounding

- Attempt to reduce technical variability and avoid confounding in a study
- If possible, sample collection, RNA extraction and labeling of all samples should be performed by the same individual at the same time of day using the same protocol and reagents
- If samples become available at different times, consider freezing then processing together
- If possible, arrays should be used from a single manufacturing batch and processed by one technician on the same day

Statistics for Genomic Data Analysis

Typical example of batch effect - completely replicated experiment

Boxplots of log2 PM probe intensities

Statistics for Genomic Data Analysis

Dealing with batch effects and other technical artifacts

Nature Reviews Genetics 11, 733-739

OPINION

Tackling the widespread and critical impact of batch effects in high-throughput data

Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly and Rafael A. Irizarry

Experimental design solutions

- Careful study design
 - *distribute* batches and other potential *sources of experimental variation* across biological groups
 - record information about personnel, reagents, sample storage and labs
- Large experiments/experiments carried out over a long time period most susceptible (but smaller studies not immune)

Statistical solutions

- Exploratory analyses to identify and quantify batch effects (and other technical artifacts)
- Adjust later ('downstream') statistical analyses to account for these unwanted effects
- Carry out *diagnostic analyses* did the adjustment work?

Dealing with batch effects - summary

Exploratory analyses

Use of SVA and ComBat does not guarantee that batch effects have been addressed. After fitting models, including processing time and date or surrogate variables estimated with SVA, re-cluster the data to ensure that the clusters are not still driven by batch effects

Nature Reviews | Genetics

Statistics for Genomic Data Analysis

Some common experiments

- Comparison of 2 conditions/types ('treatment vs. control')
 - mutant vs. wild type plants
 - liver vs. heart in mouse
- Comparison of many treatments to a control
- Clinical studies (e.g. cancer patients)
- Time course measurements at different times
- Factorial study multiple conditions varied and studied simultaneously

Factorial crossing

- Compare 2 (or more) sets of conditions in the same experiment
- Designs with factorial treatment structure allow you to measure *interaction* between two (or more) sets of conditions that influence the response
- Factorial designs may be either observational or experimental

Replication in factorial experiment

- One observation per cell (combination of levels of factor A and factor B)
 - can estimate full model parameters but no *df* left over for inference
 - can assume no interaction assess graphically
- More than one observation per cell
 - when all n_i = n (<u>balanced design</u>) the design is orthogonal
 - orthogonality can also occur if row/column cell numbers are proportional
 - orthogonality is good most precise estimation and easiest to interpret parameters
- <u>Bottom line</u>: design with equal replicates usually best

Balanced vs. Unbalanced Experimental Designs

- Balanced design: Cell sample sizes are proportional (maybe equal)
- Explanatory variables have zero relationship to one another
- Numerator SS in ANOVA are *independent* > order of variables in model doesn't matter
- Most experimental studies are designed this way – analysis is most simple
- As soon as somebody drops a test tube, it's no longer (exactly) true!

Analysis of unbalanced data

- When explanatory variables are related, there is potential *ambiguity*
 - A is related to Y, B is related to Y, and A is related to B
 - Which variable gets credit for the portion of variation in Y that could be explained by either A or B?
- Order of variables in model fitting makes a difference
- Analysis more complicated, messy

Gene expression data

Data on G genes for n samples:

mRNA samples

		sample1	sample2	sample3	sample4	sample5	
	1	0.46	0.30	0.80	1.51	0.90	
	2	-0.10	0.49	0.24	0.06	0.46	
Genes	3	0.15	0.74	0.04	0.10	0.20	
• • • • • • •	4	-0.45	-1.03	-0.79	-0.56	-0.32	
	5	-0.06	1.06	1.35	1.09	-1.09	

Gene expression level of gene i in mRNA sample j

= (normalized) Log₂(Red intensity / Green intensity) or: RMA value

Linear models

- In statistics, a 'linear model' refers to a model that is *linear in the parameters*
- Which are linear models?

1.
$$Y = \beta_0 + \beta_1 x + \epsilon$$

2. $Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$
3. $Y = \beta_0 + \beta_1 e^x + \epsilon$
4. $Y = \alpha + e^{\beta x} + \epsilon$
5. $Y = \alpha e^{\beta x} \epsilon$

Linear models

Simplest version: comparing single treatment
 (T) to single control (C)

$$Y_c = \mu + \varepsilon_c$$
; $\hat{u} = Y_c$

$$Y_T = \mu + \alpha + \varepsilon_T$$
; $\hat{a} = Y_T - Y_C$

- With multiple observations, the estimates are averages (or differences of averages)
- Readily extends to more than 2 conditions
- Matrix notation

Linear modeling

Simple regression model:

Multiple regression model:

 $y_i = \beta_0 + \beta_1 x 1_i + \beta_2 x 2_i + \dots + \varepsilon_i$

Anova model:

 $y_{ij} = \mu + \beta_1 (dummy_1)_{ij} + \beta_2 (dummy_2)_{ij} + \dots + \varepsilon_{ij}$

Effects model

 Anova model more typically expressed as an effects model :

$$y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$

Y	$dummy_1$	dummy ₂	dummy ₃		$\mu \alpha_1$	$\alpha_2 \alpha_3$
2	1	0	0	-	[1 1	0 0]
3	1	0	0		1 1	0 0
4	1	0	0		1 1	0 0
6	0	1	0	design matrix	1 0	1 0
7	0	1	0	aesign matrix =	1 0	1 0
8	0	1	0		1 0	1 0
10	0	0	1		1 0	0 1
11	0	0	1		1 0	0 1
12	0	0	1		1 0	0 1

Set μ to zero

$y_{ij} = \alpha_i + \varepsilon_{ij}$ model mat (three grou		
Parameter	Estimates	Null hypothesis
α_1	mean of group 1 (μ_1)	H ₀ : $\mu_1 = 0$
α_2	mean of group 2 (μ_2)	H ₀ : $\mu_2 = 0$
α_3	mean of group 3 (μ_3)	H ₀ : $\mu_3 = 0$

Treatment contrasts

Parameter	Estimates	Null hypothesis
Intercept	mean of 'control' group (μ_1)	H ₀ : $\mu = \mu_1 = 0$
α_2^*	mean of group 2 minus mean of 'control' group	H ₀ : $\alpha_2^* = \mu_2 - \mu_1 = 0$
	$(\mu_2 - \mu_1)$	
α_3^*	mean of group 3 minus mean of 'control' group	H ₀ : $\alpha_3^* = \mu_3 - \mu_1 = 0$
	$(\mu_3 - \mu_1)$	

...

Sum to zero contrasts

Parameter	Estimates	Null hypothesis
Intercept	mean of group means (μ_{i^*}/p)	H ₀ : $\mu = \mu_q / p = 0$
α_1^*	mean of group 1 minus mean of group means	H ₀ : $\alpha_1 = \mu_1 - (\mu_q/p) = 0$
	$(\mu_1 - (\mu_q/p))$	
α_2^*	mean of group 2 minus mean of group means	H ₀ : $\alpha_2 = \mu_2 - (\mu_q/p) = 0$
	$(\mu_2 - (\mu_q/p))$	

Typical analysis using limma

- Read in data
- Create design matrix
- Create contrast matrix (if needed)
- Fit model
- Make comparisons
- Output interesting results

Design Matrix and Contrasts

- The design matrix indicates the hybs (which RNA hybridized to each array)
- The *contrasts* are the comparisons of interest
- Making the design matrix for common reference or single color arrays is the same as for ordinary regression/anova
- (more involved for (2-color) direct designs)

Design matrix for 2 group comparison

- Predictors are (unordered) factors
 - tumor/normal
 - experimental/control
 - mutant/wild type
- Decide on model, THEN create design matrix
 - Do NOT create design matrix and then figure out what the model is (!!)
 - Design model to reflect hypotheses of interest
- Tip : when straightforward, parameterize the model in terms of comparisons of interest

Example: 3 tumor/3 normal samples

- Parameterization:
 - Y = tumor (1_tumor) + normal(1_normal)
- Design matrix:

 - Using model.matrix

> samps <- factor(rep(c("Tumor","Normal"), each = 3))
> model.matrix(~0 + samps)

Design matrix for the parameterization

explicitly remove intercept .

> mat

> model.matrix(~0 + samps)

		Tumor	Normal
Sample	1	1	0
Sample	2	1	0
Sample	3	1	0
Sample	4	0	1
Sample	5	0	1
Sample	6	0	1

Statistics for Genomic Data Analysis

Different parameterization

Parameterization:

- Y = intercept + (tum-norm)(1_tumor)

```
> model.matrix(~samps)
                                  intercept included
  (Intercept) sampsTumor
                                  by default
1
                        1
2
            1
                        1
3
            1
                        1
4
                       0
5
                       0
6
                       0
attr(,"assign")
[1] 0 1
attr(,"contrasts")
attr(,"contrasts")$samps
[1] "contr.treatment"
```


Contrasts

- Linear combination of parameters
- Coefficients sum to zero
- Allows for *comparison* of different treatments
- Number of testable contrasts (rows in contrast matrix) equals number of parameters
- Need contrast matrix when comparison of interest is not a model parameter

Example: 3 groups

- Control/treatment 1/treatment 2
- Compare each treatment to control

 - > contrast

	trt1	-	cont	trt2	-	\mathtt{cont}
\mathtt{cont}			-1			-1
trt1			1			0
trt2			0			1

Example: 3 groups

- Control/treatment 1/treatment 2
- Compare treatment mean to control
- > contrast

	mean	trt	-	\mathtt{cont}
\mathtt{cont}				-1.0
trt1				0.5
trt2				0.5

Linear models for microarray data

- Specify linear model by design matrix
 - Rows correspond to arrays
 - Columns correspond to coefficient describing RNA sources
- Single channel (*e.g.* Affy chips) or common reference design: need one coefficient for each source type
- Fit model for each gene singly (lmFit)
- Borrow information across genes (eBayes)
- DE genes (topTable)

