Statistics for Genomic Data Analysis Molecular Biology Background; Affymetrix chips

http://moodle.epfl.ch/course/view.php?id=15271

Types of organisms*

* Every biological 'rule' has exceptions!

Chromosomes and DNA

Genes are linearly arranged along chromosomes

DNA Structure Discovery

 "We wish to suggest a structure for the salt of deoxyribose nucleic acid (D.N.A.). This structure has novel features which are of considerable biological interest." Nature (1953), 171:737

DNA

- Double-stranded linear polymer
- Composed of four molecular subunits (*nucleotides*)
- Each nucleotide comprises a phosphate group, a deoxyribose sugar, and one of four nitrogen bases: adenine (A), guanine (G), cytosine (C), or thymine (T)
- Strands held together by weak hydrogen bonds between complementary bases
- Base-pairing: G pairs with C; A pairs with T

DNA Structure (overview)

Proteins

- Proteins: Macromolecules composed of one or more chains of amino acids
- Amino acids: class of 20 different organic compounds containing a basic amino group (-NH2) and an acidic carboxyl group (-COOH)
- Amino acid order is determined by the base sequence of nucleotides in the gene coding for the protein
- Proteins function as enzymes, antibodies, structures, etc.

Amino Acid Codes

Ala	A	Alanine
Arg	R	Arginine
Δsn	N	Asparagine
Asp	D	Aspartia agid
Asp	D	Aspartic acid
Cys	C	Cysteine
Gln	Q	Glutamine
Glu	E	Glutamic acid
Gly	G	Glycine
His	Н	Histidine
Ile	Ι	Isoleucine
Leu	L	Leucine
Lys	Κ	Lysine
Met	М	Methionine
Phe	F	Phenylalanine
Pro	Р	Proline
Ser	S	Serine
Thr	Т	Threonine
Trp	W	Tryptophan
Tyr	Y	Tyrosine
Val	V	Valine
Asx	В	Asn or Asp
Glx	Z	Gln or Glu
Sec	U	Selenocysteine
Unk	X	Unknown

Multiple Levels of Protein Strucure

DNA Replication

"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Nature (1953), 171:737

Figure 1.9 Base pairing provides the mechanism for replicating DNA.

C

DNA replication overview

- (Also called DNA synthesis)
- The DNA strand that is copied to form a new strand is called a *template*
- Both original DNA strands are copied
- Two new duplexes each consist of one of the original strands plus its copy (semiconservative replication)

DNA Replication (in more detail)

- DNA synthesis occurs in the *chemical direction* $5' \rightarrow 3'$
- Nucleic acid chains are assembled from 5' triphosphates of deoxyribonucleosides (triphosphates supply energy)
- DNA polymerases are enzymes that copy (replicate) DNA
- DNA polymerases require a short preexisting DNA strand (primer) to begin chain growth; with a primer base-paired to the template strand, a DNA polymerase adds nucleotides to the free hydroxyl group at the 3' end of the primer
- DNA replication requires assembly of many (> 30) proteins at a growing replication fork: helicases to unwind, primases to prime, ligases to ligate (join), topisomerases to remove supercoils, RNA polymerase, etc.

Lec 1

RNA

- RNA (ribonucleic acid) is similar to DNA, but
 - RNA is single-stranded
 - the sugar is ribose (not deoxyribose)
 - uracil (U) is used instead of thymine
- Important for *protein synthesis*, other cell activities
- There are several classes of RNA molecules, including messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and other small RNAs

The Genetic Code

- DNA: sequence of four different nucleotides
- Protein: sequence of twenty different amino acids
- The correspondence between the four-letter DNA alphabet and the twenty-letter protein alphabet is specified by the genetic code, which relates nucleotide triplets, or codons, to amino acids

Standard Genetic Code

Second letter										
	U		c		A		G			
First letter		000 00C	Phenyl- alanine	UCU UCC	Carlos	UAU UAC	Tyrosine	UGU UGC	Cysteine	U C
	0	UUA UUG	Leucine	UCA UCG	Serme	UAA UAG	Stop codon Stop codon	UGA UGG	Stop codon Tryptophan	A G
		CUU CUC	Loucino	CCU CCC	Proline	CAU CAC	Histidine	CGU CGC	Araiaina	U C
		CUA CUG	Leucine	CCA CCG	Profine	CAA CAG	Glutamine	CGA CGG	Arginine	A G
	A 4	AUU AUC	Isoleucine	hionine; ACU ACC ACA ACA ACG	Threonine	AAU AAC	Asparagine	AGU AGC	Serine	U C
		AUA	Methionine; initiation codon			AAA AAG	Lysine	AGA AGG	Arginine	A G
	G	G GUU GUC GUA GUG Valine GCA GCA GCA	GCU GCC	Alanino	GAU GAC	Aspartic acid	GGU GGC	Glurina	U C	
	J		GCA GCG	Alamite	GAA GAG	Glutamic acid	GGA GGG	Glycine	A G	

Protein Synthesis in the Cell

Transcription

- A complex process involving several steps and many proteins (enzymes)
- RNA polymerase synthesizes a single strand of RNA against the DNA template strand (*anti-sense strand*), adding nucleotides to the 3' end of the RNA chain
- Initiation is regulated by transcription factors, including promoters, usually an initiator element and TATA box, usually lying just upstream (at the 5' end) of the coding region
- 3' end cleaved at AAUAAA, poly-A tail added

Exons and Introns

- Most of the genome is non-coding regions
- Some non-coding regions (centromeres and telomeres) may have specific chomosomal functions
- Others have regulatory purposes
- Non-coding, non-functional DNA used to be called 'junk DNA', but has recently been found to have regulatory (and other) functions (ENCODE PROJECT)
- The terms exon and intron refer to (protein) coding and non-coding DNA, respectively

Intron Splicing

Translation

- The AUG start codon is recognized by methionyl-tRNA^{Met}
- Once the start codon has been identified, the ribosome incorporates amino acids into a polypeptide chain
- RNA is decoded by tRNA (transfer RNA) molecules, which each transport specific amino acids to the growing chain
- Translation ends when a stop codon (UAA, UAG, UGA) is reached

Translation Illustrated

From Primary Transcript to Protein

Alternative Splicing (of Exons)

- How is it possible that there are over 1,000,000 human antibodies when there are only about 20,000 - 30,000 genes?
- Alternative splicing refers to the different ways the exons of a gene may be combined, producing different forms of proteins within the same gene-coding region
- Alternative pre-mRNA splicing is an important mechanism for regulating gene expression in higher eukaryotes

Alternative Splicing

Hybridization

- Hybridization exploits a potent feature of the DNA duplex - the sequence complementarity of the two strands
- Remarkably, DNA can reassemble with (nearly) perfect fidelity from separated strands
- Strands can be separated (denatured) by heating

Nucleic Acid Hybridization

Polymerase Chain Reaction (PCR)

- PCR is used to amplify (copy) specific DNA sequences in a complex mixture when the ends of the sequence are known
- Source DNA is denatured into single strands
- Two synthetic oligonucleotides complementary to the 3' ends of the segment of interest are added in great excess to the denatured DNA, then the temperature is lowered
- The genomic DNA remains denatured, because the complementary strands are at too low a concentration to encounter each other during the period of incubation, but the specific oligos hybridize with their complementary sequences in the genomic DNA

PCR, ctd

- The hybridized oligos then serve as primers for DNA synthesis, which begins upon addition of a supply of nucleotides and a temperature resistant polymerase such as Taq polymerase, from Thermus aquaticus (a bacterium that lives in hot springs)
- Taq polymerase extends the primers at temperatures up to 72°C
- When synthesis is complete, the whole mixture is heated further (to 95°C) to melt the newly formed duplexes
- Repeated cycles (25—30) of synthesis (cooling) and melting (heating) quickly provide many DNA copies

Source: DNA Science, see Fig. 13.

Measuring Gene Expression

- Idea: measure the amount of mRNA to see which genes are being *expressed* in (used by) the cell
- Measuring protein would be more direct, but is currently harder (and not as highthroughput)

Areas Being Studied

- Differential gene expression between two (or more) sample types
- Similar gene expression across treatments
- Tumor sub-class identification using gene expression profiles
- Tumor *classification* (into known classes)
- Identification of "marker" genes that characterize different tumor classes
- Identification of genes associated with clinical outcomes (e.g. survival)

Major Technologies

- cDNA probes (> 200 nt), usually produced by PCR, attached to either nylon or glass supports
- (Long) oligonucleotides (25-80 nt) attached to glass support
- (Short) oligonucleotides (25-30 nt) synthesized in situ on silica wafers (Affymetrix)
- Probes attached to tagged beads
- Sequencing technologies

Affymetrix GeneChip

Affymetrix GeneChip Probe Arrays

Compliments of D. Gerhold

Statistics for Genomic Data Analysis

Lec 1

Array design

probe set = collection of probe pairs; There are tens of thousands of probe sets per chip

Array manufacture

- A. A gene sequence is represented by (~20) subsequences of the gene, each of length 25 base pairs (oligonucleotides) => *PM probes*
- Another 20 subsequences with the same bases as the PMs, except for one mismatch (MM) at the central base (arrow), is used.
- B. The light-directed process of synthesizing the oligonucleotides on the chip (array)
- C. The schematics of the light, mask, and array in the oligonucleotide synthesis process (photolithography)

Array manufacture - graphically (LEGOS)

Experimental steps (I)

- Total RNA isolated from cells and processed
 introns removed, exons spliced, poly-A tail
- RNA turned into double stranded DNA copy (cDNA) by reverse transcription
 - RNA not very stable cDNA is a way to store the RNA for a longer period of time
- When it is time to run the array, the cDNA goes through *in vitro* transcription back to RNA (now known as cRNA)

Experimental steps (II) - biotin

- Biotin is also known as vitamin H or vitamin B7
- In Affy chip experiments, there are no fluorescent labels during the hybridization step
 - This procedure differs from the 2-channel glass slide microarrays, where the samples are tagged with fluorescent dyes before hybridization
- Instead, the protein *streptavidin*, which binds to biotin, is tagged with fluorescent dye and added afterwards

Experimental steps (III)

- RNA is labelled with *Biotin* by tagging U's
- This labelled cRNA is then randomly fragmented (30 to 400 bp lengths)
- The fragmented, biotinylated cRNA is added to the array
- Anywhere on the array where an RNA fragment and a probe are *complementary*, the RNA *sticks to the probes* in the feature (hybridizes)
- (*millions* of identical probes in each feature)

Experimental steps (III)

- Array is then washed to remove any RNA that is not stuck to it (i.e., no match was made) and then stained with the fluorescent molecule that sticks to Biotin
- The entire array is then *scanned* with a laser
- The images are processed and the information is stored in files
- Quantitative analysis of what genes were expressed and at what (approximate) level measure *expression*

Steps of the expression array

- Isolate total RNA
- Sample amplification and labeling
- Sample injected into microarray
- Probe array hybridization, washing
- Probe array scanning and intensity quantification
- Intensity translated into nucleic acid abundance (*expression measure*)

RNA-DNA hybridization complex

- Like DNA, the RNA backbone is also negatively charged
- RNA is *less stable* than DNA because it is more prone to hydrolysis
- Hybridisation of RNA to DNA
 - both molecules negatively charged, BUT:
 - hydrogen bonds between complementary bases are sufficient to bind RNA to DNA
 - => spiral structure (like DNA double helix)

cDNA synthesis

Biotin labeling, hybridization, scanning

RNA fragments hybridize to DNA probes

RNA fragments with fluorescent tags from sample to be tested

Statistics for Genomic Data Analysis

Lec 1

Image analysis

- About 100 pixels per probe cell
- These intensities are combined to form one number representing expression for the probe cell oligo

Measuring expression

- Summarize fluorescence intensities from ~11-20 PM,MM pairs (probe level data) into one number for each probe set ('gene')
- Call this number a measure of expression (ME)

Expression Measures (examples)

- MAS 5.0/GCOS older Affymetrix
- PLIER (Hubbell, newer Affymetrix)
- Model Based Expression Index (MBEI)
 - Li-Wong method, implemented in dChip (windows executable)
- Robust Multichip Analysis (RMA)
 - Irizarry *et al.*, Bolstad *et al.*;
 implemented in R package affy
 - gcrma (Wu et al.)
 - other variants
- VSN (Huber et al., Rocke)

