Computer Vision

Goal: Inferring the properties of the world from one or

more images

- Photographs
- Video Sequences
- Medical images
- Microscopy data
- → Image Understanding

Challenges

Vision involves dealing with:

- Noisy images
- Many-to-one mapping
- Aperture problem
- → Requires:
- Assumptions about the world
- Statistical and physics-based models
- Training data

True image understanding seems to require a great deal of thinking. We are not quite there yet.

We Still See the Dog!

Opportunities

ameras are becoming ever more prevalent and Deep networks have immensely boosted the performance of Computer Vision algorithms:

- Tremendous potential for applications.
- A window on the way the mind works.
- But limited understanding of why things work.
- → Still much work to be done!!!!
- → Lots of jobs in Switzerland and elsewhere.

Course Outline

Introduction:

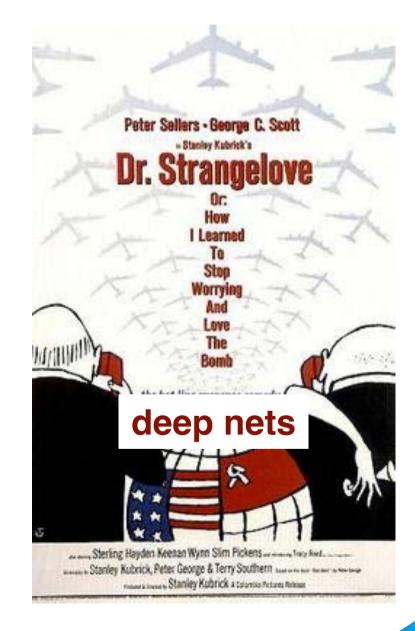
- Definition
- Human vision
- Image formation

Extracting features:

- Contours
- Texture
- Regions

Shape recovery:

- From one image
- Using additional images



Deep Learning Revolution

or

. . . .

Final Exam

Tuesday 02.07.2024 from 09h15 to 10h45 (CE3, CE4, CE6)

- One sheet of hand-written notes is allowed.
- No other documents or electronic devices.

Slide Codes

Training vs Testing

Normal slide: It is part of the course and I may ask exam questions about it.

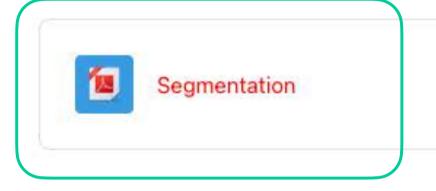
Training vs Testing

Reminder slide: We have already covered this earlier in the class. Go back to the appropriate lecture if you do not remember.

Reminder

Training vs Testing

Optional slide: This is additional material for people interested in more details. I will not ask direct exam questions on this.


Optional Bishop, xxx

Reference to book or paper for even more details.

What you Should Revise

Segmentation

Partitioning images into separate regions of interest.

Transformers in Natural Language Processing (NLP)

