Mécanique des composites

pierre-etienne.bourban@epfl.ch

Laboratoire de mise en œuvre de composites à haute performance.

Institut des matériaux (IMX)

Ecole Polytechnique Fédérale de Lausanne (EPFL),

CH-1015 Lausanne

Mécanique des composites

Micro et macromécanique

Les stratifiés

Tests mécaniques

Structures sandwich

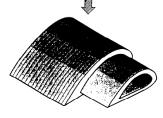
Endommagement et rupture

Composites textiles

CADFEM

Applications


De la fibre à la structure


Micromécanique

Macromécanique

Conception de structures

$$E_{1} = E_{f}V_{f} + E_{m}(1 - V_{f}) \qquad P = \frac{P_{m}(1 + \xi \chi V_{f})}{1 - \chi V_{f}}$$

$$Q_{11} = \frac{E_{1}}{(1 - V_{12}V_{21})} \qquad Q_{11} = m^{4}Q_{11} + 2m^{2}n^{2}(Q_{12} + 2Q_{66}) + n^{4}Q_{22}$$

$$G_{1} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{cf} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} & \sigma_{x} \\ \varepsilon_{2} & \sigma_{y} \end{bmatrix} \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{1} \\ \varepsilon_{2} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{1} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{1} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{1} \\ \overline{Q}_{16} & \overline{Q}_{16} & \overline{Q}_{16} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{1} \\ \overline{Q}_{16} & \overline{Q}_{16} & \overline{Q}_{16} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{1} \\ \overline{Q}_{16} & \overline{Q}_{16} & \overline{Q}_{16} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{1} \\ \overline{Q}_{16} & \overline{Q}_{16} & \overline{Q}_{16} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{1} \\ \overline{Q}_{1} \\ \overline{Q}_{1}$$

$$\begin{bmatrix} \mathbf{N}_{x} \\ \mathbf{N}_{y} \\ \mathbf{N}_{xy} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{16} \\ \mathbf{A}_{12} & \mathbf{A}_{22} & \mathbf{A}_{26} \\ \mathbf{A}_{16} & \mathbf{A}_{26} & \mathbf{A}_{66} \end{bmatrix} \begin{bmatrix} \boldsymbol{\varepsilon}_{x}^{0} \\ \boldsymbol{\varepsilon}_{y}^{0} \\ \boldsymbol{\gamma}_{xy}^{0} \end{bmatrix} + \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} & \mathbf{B}_{16} \\ \mathbf{B}_{12} & \mathbf{B}_{22} & \mathbf{B}_{26} \\ \mathbf{B}_{16} & \mathbf{B}_{26} & \mathbf{B}_{66} \end{bmatrix} \begin{bmatrix} \mathbf{K}_{x} \\ \mathbf{K}_{y} \\ \mathbf{K}_{xy} \end{bmatrix}$$

$$\begin{bmatrix} \boldsymbol{\epsilon}_{x}^{0} \\ \boldsymbol{\epsilon}_{y}^{0} \\ \boldsymbol{\gamma}_{xy}^{0} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{12} & a_{22} & 0 \\ 0 & 0 & a_{66} \end{bmatrix} \begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{bmatrix} + \begin{bmatrix} N_{x}^{T} \\ N_{y}^{T} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \boldsymbol{\varepsilon}_{x} \\ \boldsymbol{\varepsilon}_{y} \\ \boldsymbol{\gamma}_{xy} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_{x}} & -\frac{v_{xy}}{E_{x}} & 0 \\ -\frac{v_{yx}}{E_{y}} & \frac{1}{E_{y}} & 0 \\ 0 & 0 & \frac{1}{G_{xy}} \end{bmatrix} \begin{bmatrix} \boldsymbol{\sigma}_{x} \\ \boldsymbol{\sigma}_{y} \\ \boldsymbol{\tau}_{xy} \end{bmatrix}$$

Mx élastiques Porosité nulle/minimale Interfaces fibre-matrice parfaites/optimales

Orientations des fibres

Orthotropie Contraintes planes

Adhésion entre plis parfaite/optimale

Symétries d'empilement Effets de couplage

Cas de charges Propriétés effectives Mécanique des matériaux

Exemples

Orientation des fibres

Et si j'augmente le nombre de plis tout en gardant la même épaisseur ?

Pourquoi des plis à 45 ?

Les hybrides

...

Contraintes et Rupture

Mécanique des matériaux

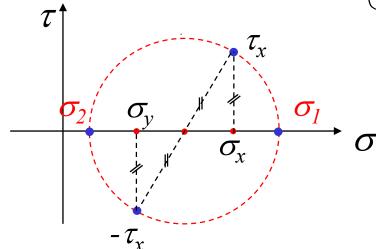
Contraintes principales

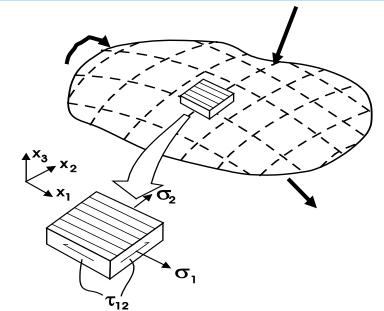
Critères de rupture

Rupture du premier pli

Rupture du composite

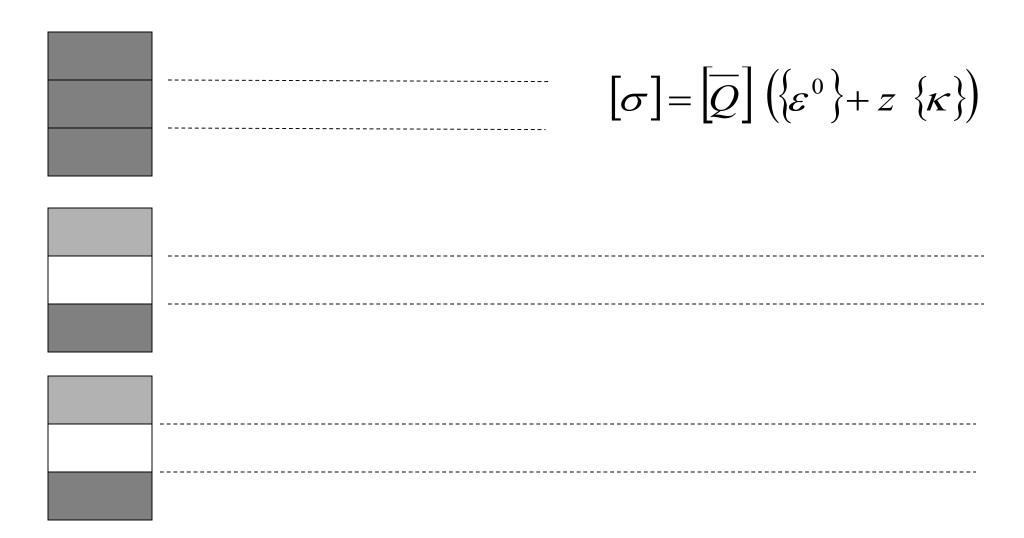
Endommagement

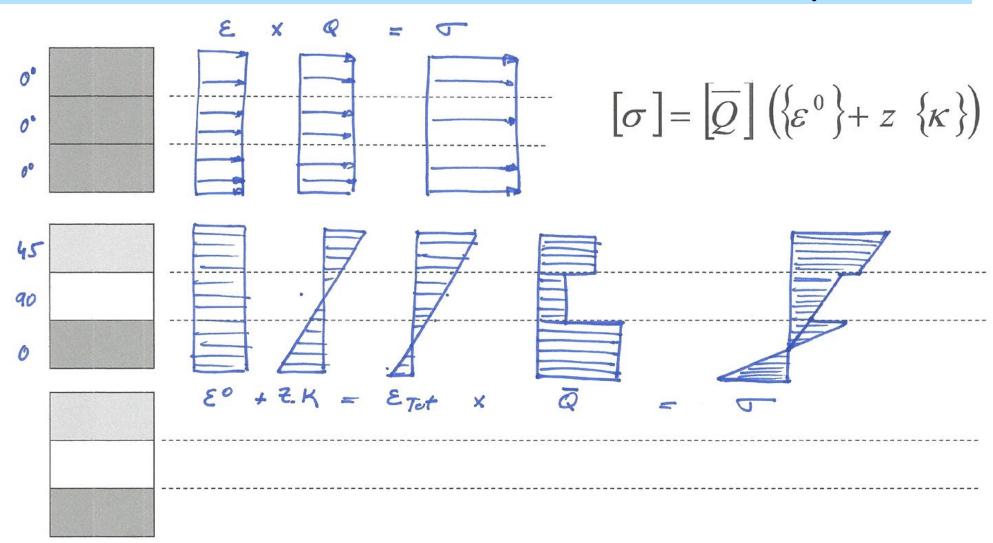

Efforts, contraintes et contraintes principales


$$\sigma = \frac{N}{S}$$

$$\sigma = \frac{M}{I_{y}} \cdot z$$

$$\frac{1}{r_{c}} = \frac{M}{E \cdot I}$$


$$\tau = \frac{M_t}{I_P} \cdot r$$


Idéalement il faudrait orienter les fibres selon les isostatiques.

Contraintes dans les stratifiés anisotropes

Contraintes dans les stratifiés anisotropes

Résistances ultimes

Laminate FPF analysis

Laminate: C 04590S

Modified: Sun Nov 11 17:28:27 2012

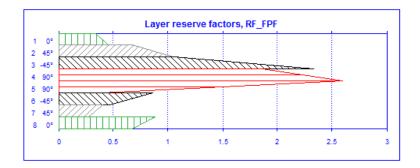
Lay-up: (0a/+45a/-45a/90a)SE h = 1.84 mm

Ply t E_1 E_2 G_12 nu_12 G_31 G_23 GPa a E;Epoxy;UD-.230/299/50 0.23 3.6 0.3 3.6 3.46154 X_t X_c Y_t Y_c X_eps,t X_eps,c Y_eps,t Y_eps,c s 33 110 70 70 41.5385 2.44737 1.5 0.366667 1.22222 1.94

Load: 5kN10cm Mx125sur25cm Modified: Sun Nov 11 21:02:20 2012 Type: Forces and moments (Var.;E)

 $N_x = 50000 \text{ N/m}$ $M_x = 500 \text{ Nm/m}$ $N_y = 0 \text{ N/m}$ $M_y = 0 \text{ Nm/m}$ $N_xy = 0 \text{ Nm/m}$ $M_xy = 0 \text{ Nm/m}$

 $Q_x = 0 \text{ N/m}$ $Q_y = 0 \text{ N/m}$ Factor of safety: FoS^v = 1

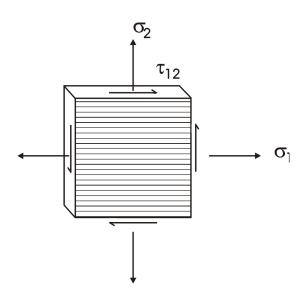

Failure criterion: Tsai-Wu; Max strain; Von Mises; Out-of-plane shear; Out-of-plane s

(UD; non-UD; homogeneous; honeyc, core; foam/other core; adhe-

Failure crit. param. : Tsai-Wu F_12*=-0.5 Stress/strain recovery : layer top/bottom

Laminate reserve factors

FPF Mode FPF-only Mode Crit. layers ILS Crit. interf. $RF = 0.28 \qquad 2t \qquad 0.28 \qquad 2t \qquad 7(45^{\circ}) \qquad - \qquad -$



Layer reserve factors - FPF

	Ply	theta			RF	
1	а	0	t	2.	0.34	1c/2t
			b		0.45	
2	а	45	t	6.	0.68	S
			b		1.05	
3	а	-45	t	7.	1.06	S
			b		2.33	
4	а	90	t	8.	1.86	2c
			b		2.60	
5	а	90	t	3.	2.60	2t
			b		0.40	
6	а	-45	t	4.	0.86	2t/s
			b		0.47	
7	а	45	t	1.	0.40	2t
			b		0.28	
8	а	0	t	5.	0.89	1t
			b		0.67	



Résistances ultimes

	V_{f}	$\sigma_{u,1}^{r}$	$\sigma_{u,2}^{r}$	$\sigma_{u,1}^{c}$	$\sigma_{u,2}^{c}$	ι_u
carbone / époxy (AS/3501)	0.60	1448	48	1172	248	62
Kevlar 49 /époxy	0.60	1380	27	276	65	60
verre-E / époxy (scotch ply 1002)	0.45	1100	28	620	138	83

Les normes

Table 2 Typical mechanical properties reported on data sheets

Property	Test method	Test description
Tensile strength	ASTM D 638	Property reports the stress in a standard specimen at the specified point on the stress-strain curve. Value reported could be yield or ultimate.
Elongation	. ASTM D 638	Property reports percent of elongation during the tensile test.
Tensile modulus	. ASTM D 638	Property reports the stiffness of the material. Value is the slope of the line tangent to the stress-strain curve at the origin.
Shear strength	. ASTM D 732	Property reports the shear stress calculated by dividing the load required to blank out the specimen by the area, as calculated by the perimeter of the punch times the specimen thickness.
impact strength	. ASTM D 256	Property reports the energy absorbed when a notched specimen is subjected to a shock flexural loading.
Gardner impact		Property reports the energy required for a projectile to fracture a sample plaque of the material. The projectile weight, shape, and support configuration are specified.
Tensile impact strength		Property reports the energy required to fracture a molded specimen subjected to a shock tensile load.
Fracture toughness		Property reports resistance to crack propagation. Property reports the maximum fiber stress in a simply supported bar loaded in flexure until either 5% strain is reached or the bar fractures.
Flexural modulus	. ASTM D 790	Property reports the stiffness in flexure. Value is obtained by taking the slope of the tangent to the flexural stress-strain curve at origin.
Compression strength	. ASTM D 695	Property reports the maximum compressive stress carried by the test specimen during the compressive test.
	-	
Poisson's ratio		***

Depending on which value is reported, some portion of the tensile strength may be used as a design-stress limit. This is valid for gradual static loading at room temperature. For glass-reinforced materials, anisotropic properties render this property useless for design.

discluiness for design purposes

Property is meaningful for elongations from 0 to 15%. Data may be used to set interference limits or strain limits on a design. Strain rate, environmental temperature, and molding flaws such as knit lines must be considered in an actual part. For cases in which elongation exceeds 8%, the material typically has started to yield, and necking occurs. This is well beyond the point useful for design.

Tensile modulus may be useful in calculating the deflection. Value is good only for small strains of 1% and at room temperature. Glass-reinforced materials behave anisotropically. Loads applied over extended time need to include creep.

The shear strength may have limited value in design engineering. Stress concentrations and shear rates that vary between the test and an application will affect the accuracy of the value.

Izod impact does not provide usable design information. It can indicate brittle behavior in a material, which would suggest certain approaches to design for impact loads.

Gardner impact has very limited design value. The speed, shape, and weight of the projectile are likely to vary from actual use conditions. Also, the manner of support for a molded part differs from that used for the test plaque.

Tensile impact has little design value. It may indicate a brittle material that could affect the design approach employed.

Facilitates material selection

Flexural strength has little design value. The value is based on classical elastic equations, which are inaccurate for large deflections, and are based on the assumption that the material obeys Hookes' Law in tension and compression. In actuality, the moduli are different. As with other strength properties, strain rate, temperature, and anisotropic properties limit the usefulness of this property in an application.

Flexural modulus is useful as an approximation for the elastic modulus in deflection equations, or to convert strain into stress. However, it can be applied only to applications at room temperature and to small deflections. It is widely used in finite element analysis (FEA). Deflection is often the biggest problem in plastic part design.

Compressive strength cannot be considered significant for design when the application of the loads is widely different from the gradual test application. Fatigue and yielding are not considered and may need to be accounted for in an application.

Poisson's ratio is needed for stress analysis, for both general deflection and FEA.

Critères de rupture

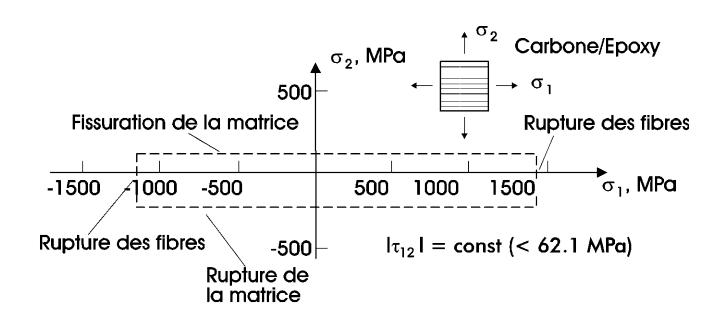
- > Contraintes maximales
- > Déformations maximales
- > Critères d'interaction : Hill, Tsai-Hill
- > Critère de Tsai-Wu
- > Critères de Hashin

Critère de la contrainte maximale

Traction et cisaillement $\sigma_1 = \sigma_{u,1}^T$ $\sigma_2 = \sigma_{u,2}^T$ $\left| au_{12} \right| = au_u$

$$\sigma_{1} = \sigma_{u,1}^{T}$$

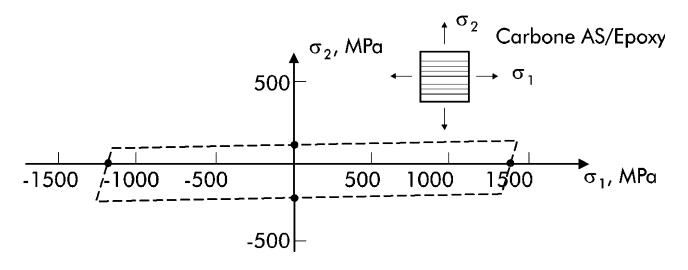
$$\sigma_2 = \sigma_{u,2}^T$$


$$\left| \tau_{12} \right| = \tau_u$$

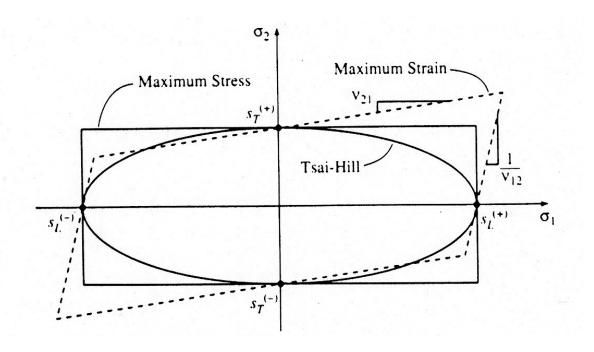
Compression et cisaillement $\left|\sigma_{1}\right|=\sigma_{u,1}^{C} \quad \left|\sigma_{2}\right|=\sigma_{u,2}^{C} \quad \left| au_{12}\right| = au_{u}$

$$\left|\sigma_{1}\right| = \sigma_{u,1}^{C}$$

$$|\sigma_2| = \sigma_{u,2}^C$$


$$\left| au_{12} \right| = au_u$$

Critère de la déformation maximale


$$-\varepsilon_{u,i}^{C} < \varepsilon_{i} < \varepsilon_{u,i}^{T}$$

$$\sigma_{u,1} = \frac{\sigma_{u,2}^T - \sigma_2}{v_{21}} \qquad \sigma_1 > 0$$

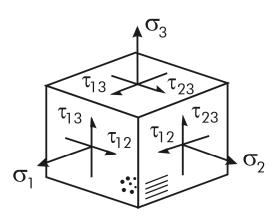
Critère de Tsai-Hill

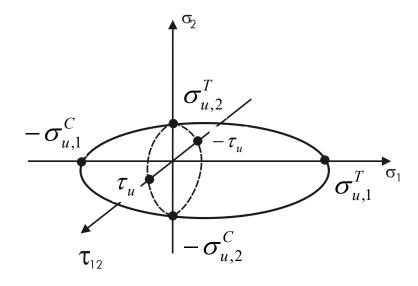
$$\frac{\sigma_1^2 - \sigma_1 \sigma_2}{\left(\sigma_{u,1}^T\right)^2} + \frac{\sigma_2^2}{\left(\sigma_{u,2}^T\right)^2} + \frac{\tau_{12}^2}{\tau_u^2} = 1$$

Critère de Tsai-Wu

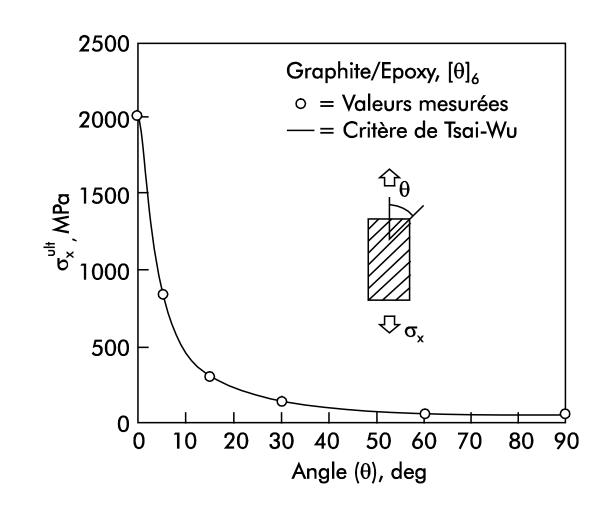
$$F_1\sigma_1 + F_2\sigma_2 + F_{11}\sigma_1^2 + F_{22}\sigma_2^2 + F_{66}\tau_{12}^2 + 2F_{12}\sigma_1\sigma_2 = 1$$

$$F_{1} = \frac{1}{\sigma_{u,1}^{T}} - \frac{1}{\sigma_{u,1}^{C}} \qquad F_{11} = \frac{1}{\sigma_{u,1}^{T} \sigma_{u,1}^{C}}$$

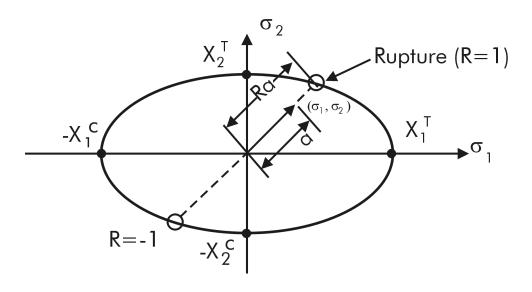

$$F_{11} = \frac{1}{\sigma_{u,1}^T \sigma_{u,1}^C}$$

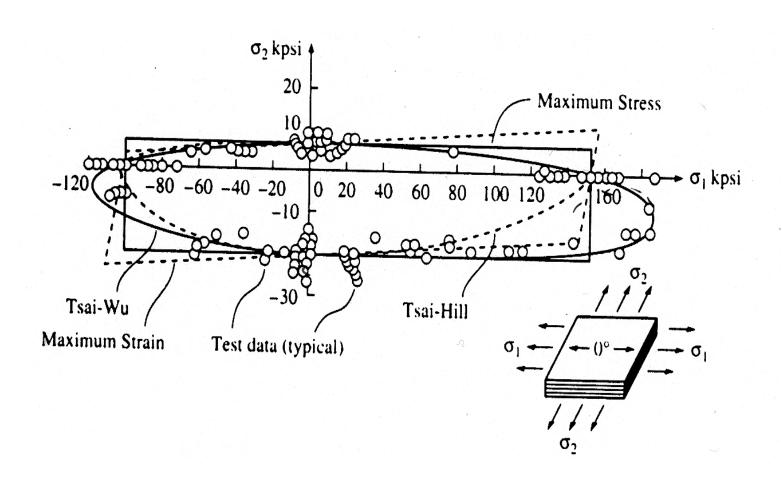

$$F_2 = \frac{1}{\sigma_{u,2}^T} - \frac{1}{\sigma_{u,2}^C}$$
 $F_{22} = \frac{1}{\sigma_{u,2}^T \sigma_{u,2}^C}$

$$F_{22} = \frac{1}{\sigma_{u,2}^T \sigma_{u,2}^C}$$


$$F_{66} = \frac{1}{\tau_u^2}$$

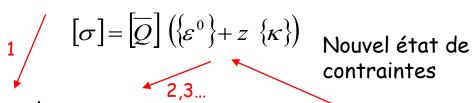
$$F_{66} = \frac{1}{\tau_u^2} \qquad F_{12} = \frac{-\sqrt{F_{11}F_{22}}}{2}$$


Critère de Tsai-Wu


Facteur de sécurité

Reserve Factor

Mathématiquement, la valeur de R est calculée pour n'importe quel état de contraintes appliquées $(\sigma_1, \sigma_2, \tau_{12})$ par substitution de $(R\sigma_1, R\sigma_2, R\tau_{12})$ dans la théorie de la rupture adéquate et en résolvant pour R.

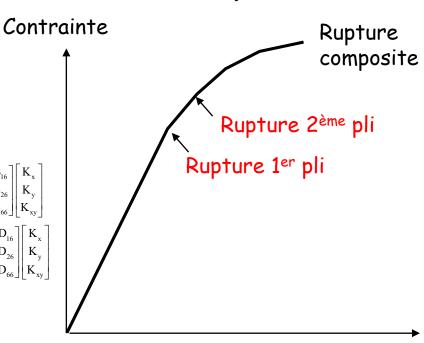

Critères de rupture

Rupture du premier pli puis rupture finale

Contraintes dans les strates

Critère de rupture

$$\frac{\sigma_1^2 - \sigma_1 \sigma_2}{\left(\sigma_{u,1}^T\right)^2} + \frac{\sigma_2^2}{\left(\sigma_{u,2}^T\right)^2} + \frac{\tau_{12}^2}{\tau_u^2} = 1$$


Rupture d'un pli

$$\left(\overline{Q_{ij}}\right)_{pli \ rompu} = 0$$

$$\begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} \epsilon_x^0 \\ \epsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} K_x \\ K_y \\ K_{xy} \end{bmatrix}$$

$$\begin{bmatrix} M_x \\ M_y \\ M_{xy} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} \epsilon_y^0 \\ \epsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} + \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{12} & D_{22} & D_{26} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} K_x \\ K_y \\ K_{xy} \end{bmatrix}$$

$$\begin{split} A_{ij} &= \sum_{k=l}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k} - z_{k-l} \right) \\ B_{ij} &= \frac{1}{2} \sum_{k=l}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{2} - z_{k-l}^{2} \right) \\ D_{ij} &= \frac{1}{3} \sum_{k=l}^{N} \left(\overline{Q_{ij}} \right)_{k} \left(z_{k}^{3} - z_{k-l}^{3} \right) \end{split}$$

Re-calcul des constantes

Deformation

First Ply Failure

Dimensionnement : propriétés effectives

Efforts connus
$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{xy}^{0} \end{bmatrix}$$

h = épaisseur du stratifié

Contraintes globales moyennes (fictives)

$$\begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{bmatrix} = 1/h \begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{bmatrix} = 1/h \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{xy}^{0} \end{bmatrix} \qquad \frac{1}{h} A_{ij} = \sum_{k=1}^{N} \left(\overline{Q}_{ij} \right)_{k} \frac{\text{épaisseur}_{k}}{h} = \sum_{k=1}^{N} \left(\overline{Q}_{ij} \right)_{k} \text{pourcentage}_{k}$$

$$\frac{1}{h}A_{ij} = \sum_{k=l}^{N} \left(\overline{Q_{ij}} \right)_{k} \frac{\text{\'epaisseur}_{k}}{h} = \sum_{k=l}^{N} \left(\overline{Q_{ij}} \right)_{k} \text{pourcentage}_{k}$$

$$\begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{bmatrix} = h \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix}^{-1} \begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_{x}} & -\frac{v_{xy}}{E_{x}} & 0 \\ -\frac{v_{yx}}{E_{y}} & \frac{1}{E_{y}} & 0 \\ 0 & 0 & \frac{1}{G_{xy}} \end{bmatrix} \begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{bmatrix}$$

Modules effectifs

Dimensionnement : déformation et épaisseur minimale

Choisir des pourcentages initiaux

Calculer
$$\frac{1}{h}A_{ij} = \sum_{k=1}^{N} (\overline{Q_{ij}})_{k} pourcentage_{k}$$

Inverser pour obtenir modules effectifs E_x , E_y et les déformations

Critère de rupture pour le pli k en entrant dans le critère de rupture $h \sigma_x$ qui est connu car = N_x

$$\frac{\left(h\sigma_{1}\right)^{2} - h\sigma_{1}h\sigma_{2}}{\left(\sigma_{u,1}^{T}\right)^{2}} + \frac{\left(h\sigma_{2}\right)^{2}}{\left(\sigma_{u,2}^{T}\right)^{2}} + \frac{\left(h\tau_{12}\right)^{2}}{\tau_{u}^{2}} = h_{k}^{2}$$

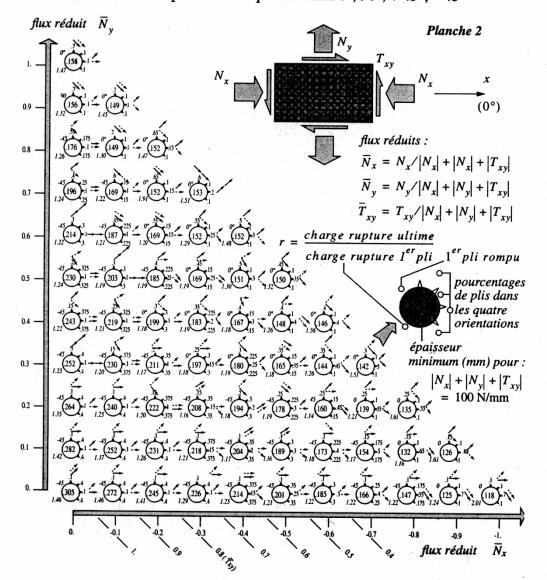
h pour éviter la rupture du pli k est donc connu

idem pour autres plis

Choisir le $h = \sup(h_k)$

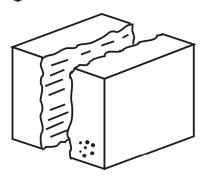
Pourcentages initiaux technologiques

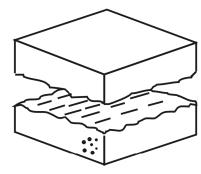
- >Proportion minimum de 5 à 10% dans chaque direction 0, 90, +45, -45
- > Epaisseur minimale du stratifié de l'ordre du mm (8 couches UD ou 3 à 4 couches de tissu équilibré)
- > Considérer les directions des efforts principaux
- >Plis à 90 placés en surface, puis plis à 45, puis à 0 lorsque les efforts prépondérants sont à 0
- > Pas plus de 4 plis consécutifs dans une même direction

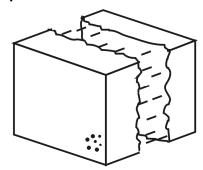


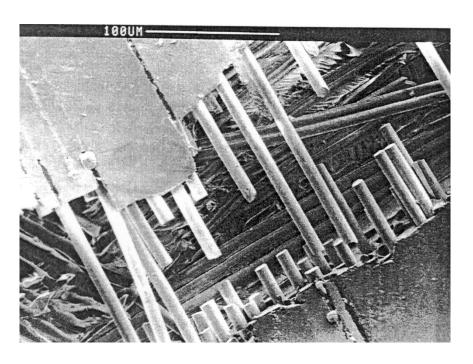
Guides de conception

Composition optimum d'un stratifié carbone/époxyde

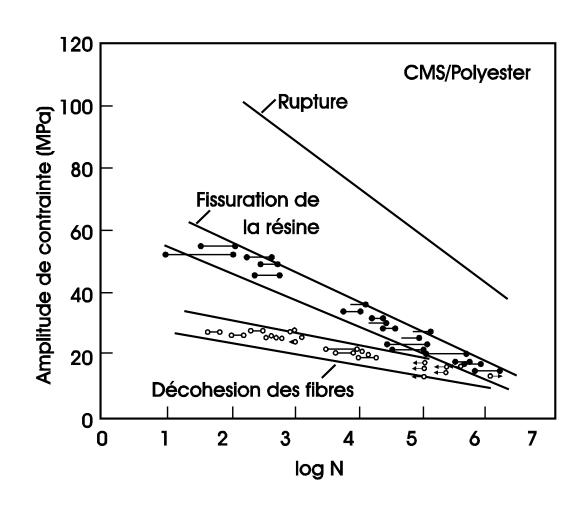

 $V_f = 0.6$; caractéristiques du pli : cf. annexe 1 ou paragraphe 3.3.3.


10 % minimum de plis dans chaque direction 0°, 90°, + 45°, - 45°

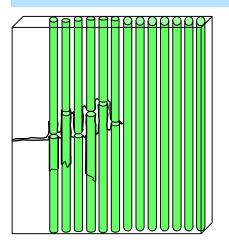

τ_{13} τ_{23} τ_{12} τ_{12} τ_{12} τ_{23} σ_{2}

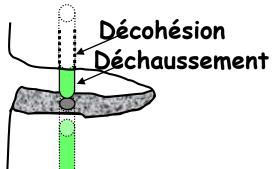

Endommagement

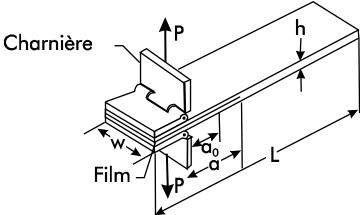
(b) Rupture de la matrice



(c) Arrachage/rupture des fibres




Fatigue des composites

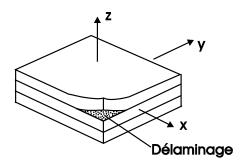


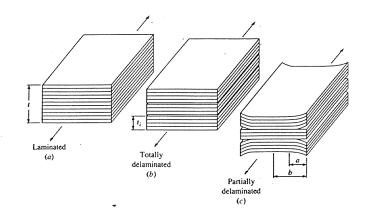
Propagation de fissures

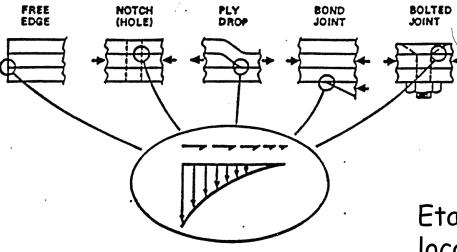
Approche G_{IC}, courbes R

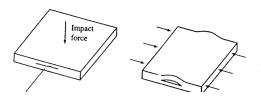
https://mediaspace.epfl.ch/media/DL L-MAT-M%C3%A9canique-rupture+-+Quelle+%C3%A9nergie+propage+une+ fissure+F/O ftatq5q5/29020

Energie de rupture typique


d'une matrice thermodurcie: ~100 J/m²


des fibres de verre: ~10 J/m²


d'un composite: ~ 10000 J/m²


Le délaminage

Etat de contraintes locales complexe

Mécanique des composites

Micro et macromécanique

Les stratifiés

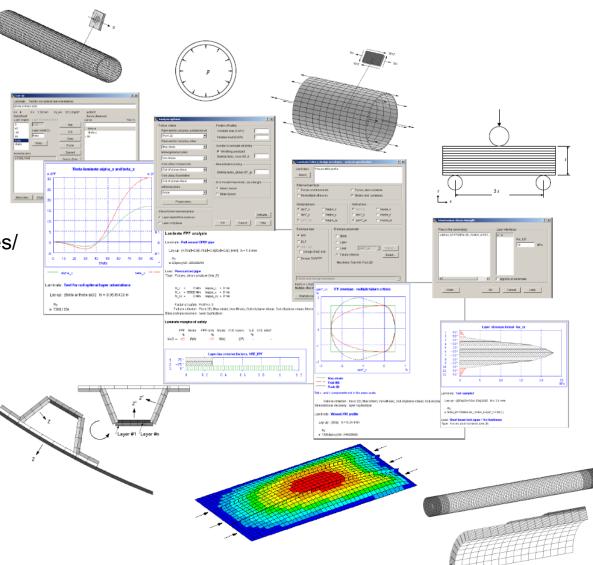
Tests mécaniques

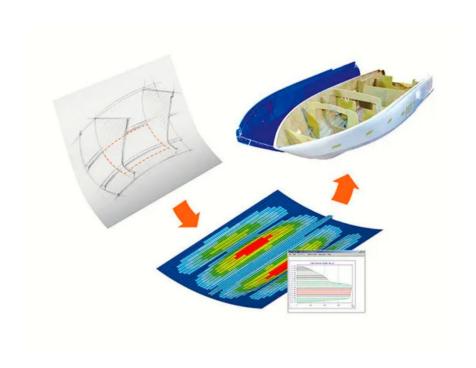
Structures sandwich

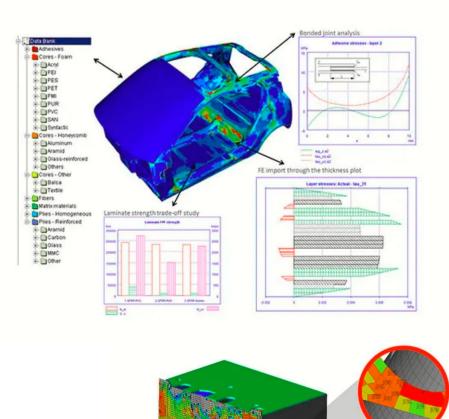
Endommagement et rupture

Composites textiles

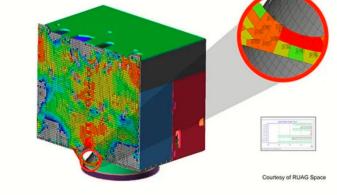
CADFEM


Applications

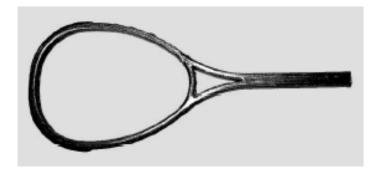

Mécanique des composites stratifiés

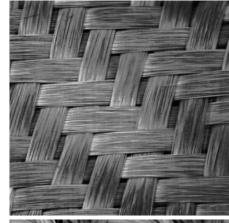


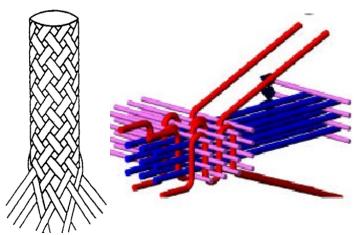
https://www.altair.com/composites/

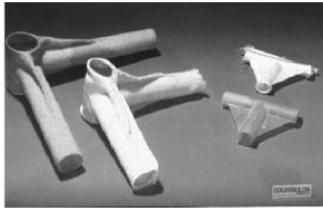


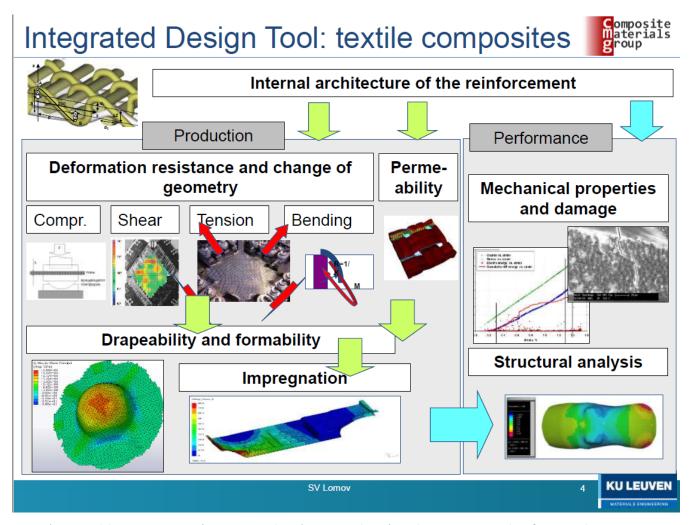
FEM

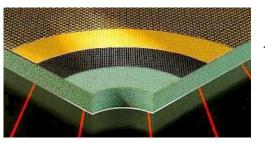

https://filecr.com/windows/esacomp/?id=13436849765

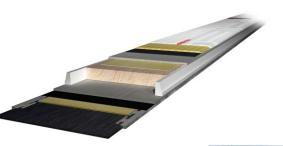


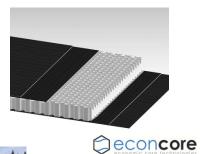

Les composites textiles

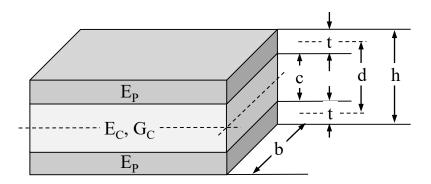





Les composites textiles


https://www.mtm.kuleuven.be/onderzoek/scalint/Composites/software/wisetex




Structures sandwich

$$D \approx D' = E_P \frac{b t d^2}{2}$$

Révision et examen

 $\underline{https://docs.google.com/spreadsheets/d/1vMpbdes4FIINZgwfZNScfrZTd3DPYVLIwxQKzwLknu0/edit\#gid=0}$

