Ising

Metropolis

Glauber

dynamics

\[
\text{G} = (v, E)
\]

\[
V = E, t, x, t - \text{spin configuration}
\]

binary alphabet \[X = \{t, \bar{t}\}\]

"degrees of freedom" on "spins"
a) Ising Model

b) Metropolis algo.

c) Glauber algo or dynamics.

(Heat bath dynamics.)

\[G = (\mathcal{V}, \mathcal{E}) , \quad \mathcal{V} = \{1, 2, 3, \ldots, N\} \]

binary alphabet \(\chi = \{-1, 1\} \) and

"degrees of freedom" or "spins" \(\sigma \in \chi \).

\(\sigma_1 \in \{+1\} \)

\(\sigma_2 \in \{-1\} \)

\(\sigma_3 \in \{+1\} \)

\(\sigma_4 \in \{-1\} \)

\(\sigma_5 \in \{+1\} \)

Complete graph for example:

\[\prod(\sigma) = \frac{e^{-\beta H(\sigma)}}{Z} \]

Hamiltonian:

\[H(\sigma) = -\sum_{(n,m) \in \mathcal{E}} J_{nm} \sigma_n \sigma_m - \sum_{n \in \mathcal{V}} h_n \sigma_n \]

assignment or "spin configuration"

\[\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_N) \]

\[Z = \sum_{\sigma \in \chi^N} e^{-\beta H(\sigma)} \]

"Partition function"
Another important example: square grid \mathbb{Z}^d.

Some intuition: (from physics)

- The “spins” represent magnetic moments, which are carried by atoms in a crystal. Say:

- Up spin $\sigma = +1$
- Down spin $\sigma = -1$

- Gross simplification with only two directions for the magnetic moments.

- There “spins” interact.

Energy of a configuration of two spins

- Favorable:
 - $J_{sw} > 0$
 - $J_{sw} < 0$

- Unfavorable:
 - $J_{sw} > 0$
 - $J_{sw} < 0$
The ferromagnetic model: all $J_{\omega\omega} > 0$.

Consider the special case $h_\omega = 0$:

$$H(\sigma) = -\sum_{(\omega\omega) \in \mathcal{E}} J_{\omega\omega} \sigma_\omega \sigma_\omega$$

has two minima (all $\sigma_\omega = +1$) or (all $\sigma_\omega = -1$).

- The anti-ferromagnetic: all $J_{\omega\omega} < 0$.

Situation more complicated and will depend on the graph. E.g.

is a minimum, second min.

Stepened configuration

Frustration: difficulty will come for large graphs because you cannot win all terms simultaneously in $H(\sigma)$.
The study of optimization of $H(S)$ and of sampling $W(S) = \frac{e^{-\beta H(S)}}{Z}$ is a difficult problem especially for "frustrated" systems with all possible signs for $\sum_i m_i > 0$ and $\sum_i m_i < 0$.

- Interpretation of β: inverse of the temperature of the system $\beta = \frac{1}{kT}$
 - β small: corresponds to a nearly high temperature uniform Measure on state space \mathcal{X}^N.
 - Typical spin configurations will be more a less uniform at random from \mathcal{X}^N.

\[\begin{array}{c}
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\end{array} \]

$-\beta H(S)$ is peaked around the Minima of $H(S)$ ($\beta \rightarrow +\infty$).

β large: $e^{-\beta H(S)}$ is peaked around the Minima of $H(S)$ ($\beta \rightarrow +\infty$).

Typical spin configuration fluctuations around Minima.
Formal definitions:

- **Magnetization:**

 \[
 m(\beta) = \frac{1}{N} \sum_{\sigma} \langle \sigma \rangle
 \]

 where notation \(\langle \sigma \rangle = \frac{E}{\Omega} (\sigma) = \sum \sigma \times \Omega(\sigma) \) is the bracket notation.

 \[\text{average}\]

 \(\rightarrow \) Intuitively this is the total magnetic moment.

 \(\rightarrow \) If \(m(\beta) \approx 0 \) the system is not magnetized.

 \(\rightarrow \) If \(m(\beta) \neq 0 \) the system is magnetized.

 Model displays transition between these two behaviors typically as \(\beta \) varies from high temp to low high temp.

- **How would you calculate \(m(\beta) \)?**

 Remark (exercise):

 \[
 \langle \sigma \rangle = \frac{1}{\beta} \frac{\partial}{\partial \beta} \ln Z
 \]

 \[
 Z = \sum_{\sigma \in \chi} \exp \left\{ \beta \sum_{\omega \in \omega} \sigma_{\omega} + \beta \sum_{\omega \in \omega} \omega \sigma_{\omega} \right\}
 \]

 But computing \(Z \) is difficult and in general impossible.
Instead we go back to:

\[m(\beta) = \langle \frac{1}{N} \sum_{\mathbf{\sigma} \in \mathcal{V}} \sigma \rangle = \frac{1}{N} \sum_{\mathbf{\sigma} \in \mathcal{V}} \sigma \]

and consider an estimator based on an MCMC algo.

\[\hat{m}(\beta) = \lim_{t \to \infty} \left\{ \frac{1}{N} \sum_{\mathbf{\sigma} \in \mathcal{V}} \sigma(t) \right\} \]

where \(\sigma_0, \sigma_1, \ldots, \sigma(t), \ldots \) is an MCMC chain with stationary \(\bar{\sigma} \).

We can also compute any sort of average:

\[\left\langle A(\sigma) \right\rangle \quad \text{e.g.} \quad \frac{1}{N} \left\langle H(\sigma) \right\rangle \]

\(\frac{1}{N} \) internal energy per vertex per site.

again:

\[\lim_{t \to \infty} \left\{ \frac{1}{N} \sum_{\mathbf{\sigma} \in \mathcal{V}} H(\sigma(t)) \right\} \]
A bit of background on the phase transition phenomena (scratch the surface of the subject).

\[G = (V, E) \] is a complete graph.

\[S_{vw} = \frac{S}{N} > 0 \quad \text{for all } (v, w) \in E \]

\[h_v = h \in \mathbb{R} \quad \text{for all } v \in V. \]

Ferromagnetic Ising Model on a complete graph.

\[H(\sigma) = -\frac{S}{2N} \sum_{v \neq w} \sigma_v \sigma_w - h \sum_{v \in \text{complete graph}} \sigma_v \]

acts like a bias in \(\exp(-\beta H(\sigma)) \).

\[\frac{1}{2} \left(\sum_{v \in \text{complete graph}} \sigma_v \right)^2 - N \cdot \exp(-\beta H(\sigma)). \]

It possible to in fact compute \(Z \) and also average \(\sigma \); and in particular

\[m(\beta) = \frac{1}{N} \sum_{v \in \text{complete graph}} \sigma_v. \]
Finding is eventually:

\[m(\beta, h) = \left\langle \frac{1}{N} \sum_{\sigma} \sigma \right\rangle. \]

\[\text{for} \quad \beta > 0 \quad \text{for the complete ferro-magnetic model} \]

\[\text{you can plot} \quad m(\beta) = \lim_{h \to 0^+} m(\beta, h). \]

The spontaneous magnetization or zero bias magnetization or zero-magnetic field magnetization.

\[m(\beta) \]

\[+1 \rightarrow +1 \]

\[-1 \rightarrow -1 \]

\[T = T_c = 5^{-1} \]

\[\text{sharp phase transition "sudden" at} \]

\[T = \beta^{-1}. \]

\[\text{high temperature behavior.} \]

\[\text{Average spin magnetization is zero.} \]

\[\text{Typical spin conf is "disordered".} \]

\[\text{Lowtemp behavior} \]

\[\text{Average spin Mag} \neq 0. \]

\[\text{Typical spin conf are fluctuations of (all+1)} \]

\[\text{and (all-1).} \]
d) **Metropolis algorithm (Trial)**

c) **Glauber dynamics**

- Heat bath dynamics in general

d) **Simulation results**

Metropolis algorithm

Hamiltonian (energy a cost).

$$ H(\sigma) = - \sum_{\text{edges} \in E} J_{\sigma_w \sigma_v} - \sum_{v \in V} h_v \sigma_v. $$

$$ \sigma = (\sigma_1, \ldots, \sigma_N) \in \{-1,1\}^N $$

$$ G = (V, E). $$

Also:

- Select a vertex $v \in V$ uniformly at random (with prob $\frac{1}{N}$).
- Propose the move $\sigma \rightarrow \sigma'$: $\sigma'_w = \sigma_w$ \quad $w \neq v$
 $\sigma'_v = -\sigma_v$ \quad $v \in E$.

- Compute the cost difference: $\Delta E(\sigma \rightarrow \sigma') = H(\sigma') - H(\sigma)$.

- Accept the move with probability $A(\sigma \rightarrow \sigma') = \min(1, e^{-\beta \Delta E})$.
\[H(\sigma) = -\sum_{\omega\in \omega} J_{\omega \omega} \sigma_{\omega} \sigma_{\omega} - \sum_{\nu} h_{\nu} \sigma_{\nu}. \]

\[\Delta E(\sigma \rightarrow \sigma') = H(\sigma') - H(\sigma). \]

New energy - old energy.

\[A(\sigma \rightarrow \sigma') = \min \left(1, e^{-\beta \Delta E(\sigma \rightarrow \sigma')} \right) \]

\[= \begin{cases} 1 & \text{if } \Delta E(\sigma \rightarrow \sigma') < 0 \quad \text{New Energy} \prec \text{Old Energy} \\ e^{-\beta \Delta E} & \text{if } \Delta E \geq 0 \quad \text{New Energy} \succ \text{Old Energy} \end{cases} \]

Remark

\[e^{-\beta \Delta E} = \frac{e^{-\beta H(\sigma')}}{e^{-\beta H(\sigma)}} = \frac{\pi(\sigma')}{\pi(\sigma)}. \]

- chain is irreducible, aperiodic (self loops), detailed balance is satisfied and \(\pi \) is invariant.

\[\begin{cases} \text{chain is ergodic and} \\ \text{it is a limiting distribution} \end{cases} \]

- This is certainly true for \(N \) finite and time (\# of steps)
. Final important point,

\[\Delta E(\sigma \to \sigma') = H(\sigma') - H(\sigma), \]

\[= \left\{ - \sum_{(k, \ell) \in E} k\ell \sigma_k \sigma'_{\ell} - \sum_{k \in V} h_k \sigma_k \right\} \]

\[- \left\{ - \sum_{w, \ell \in E} w\ell \sigma_w \sigma'_{\ell} - \sum_{k \in V} h_k \sigma_k \right\}. \]

We have selected vertex \(\sigma \) and \(\sigma'_w = \sigma_w \) if \(w \in \sigma \)

If \((k, \ell) \notin \sigma\) and \(k \notin \sigma\) then terms simplify.

and it remains only:

\[\sigma'_w = \sigma_w \]

\[= \left(\sum_{w} \sum_{\sigma'_w} w \sigma_w \sigma'_w - h_w \sigma'_w \right) - \left(\sum_{w} \sum_{\sigma'_w} w \sigma_w \sigma'_w - h_w \sigma'_w \right) \]

\[= 2 \left(\sigma'_w \sum_{w} \sigma_w + h_w \right) \]

For interaction you get only neighbors of \(w \) that share an edge count. For the bias, only the vertex \(v \) enter.
Glauber dynamics, or algo.

- Select a vertex i at random with uniform
 $V = \{1, \ldots, N\}$

- Propose the move $\sigma \rightarrow \sigma'$ s.t.
 $\sigma'_w = \sigma_w, \quad w \neq i$
 $\sigma'_i = -\sigma_i \quad \text{flip of } i \text{ spin.}$

- Accept the move with acceptance probability
 \[A(\sigma \rightarrow \sigma') = \frac{1}{2} \left\{ 1 + \tanh \left(\frac{\Delta E(\sigma \rightarrow \sigma')}{2} \right) \right\} \]

\[
[\text{Reject the move with prob } 1 - A(\sigma \rightarrow \sigma') = \frac{1}{2} \left\{ 1 + \tanh \left(\frac{\Delta E}{2} \right) \right\}.
\]

\[\Delta E(\sigma' \rightarrow \sigma) = H(\sigma') - H(\sigma) \]
\[= 2 \left(\sum_w J_{ww} \sigma_w + h_w \sigma_w \right) \quad (\text{as before}). \]
Again this chain is irreducible and aperiodic.

Exercise: detailed balance is satisfied again.

⇒ There is a flat dish which is flat.

... ⇒ chain is irreducible, periodic, for an i.e. cycodic and it is a limiting dish.

Remark:

\[A(\sigma \to \sigma') = \frac{1}{2} \left(1 - \tanh \frac{\beta \Delta E}{2} \right) \sigma \]

\[\Delta E = 2 \sigma_\alpha \sum_w \Delta_{\sigma w} \sigma_w + 2 h_\alpha \sigma_\alpha \]

⇒ \[A(\sigma \to \sigma') = \frac{1}{2} \left(1 - \tanh \frac{\beta}{2} \left(\sum_w \Delta_{\sigma w} \sigma_w + h_\alpha \right) \right) \]

\[\tanh(-x) = -\tanh x \]

\[\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]

\[A(\sigma \to \sigma') = \frac{1}{2} \left(1 - \sigma_\alpha \tanh \beta h_{\text{loc}} \right) \]

\[h_{\text{loc}} = \sum_w \Delta_{\sigma w} \sigma_w + h_\alpha \]

Total effective bias on spin.

"Total local magnetic field"
\[
A(c \rightarrow c') = \frac{1}{2} \left(1 - \sigma_c \tanh \beta h^\text{loc}_c \right) \cdot \text{accept move.}
\]

Reject move with prob
\[
1 - A(c \rightarrow c') = \frac{1}{2} \left(1 + \sigma_c \tanh \beta h^\text{loc}_c \right) \equiv R(c \rightarrow c').
\]

Case:

- \(\sigma_c = +1 \) initially, and \(h^\text{loc}_c = \sum \sum \sigma_w h_w + h_c > 0 \).

\(R(c \rightarrow c') > A(c \rightarrow c') \) i.e. tendency is not to flip.

- \(\sigma_c = -1 \) initially, and \(h^\text{loc}_c > 0 \).

\(R(c \rightarrow c') < A(c \rightarrow c') \) i.e. tendency is to flip.

In Glauber dynamics at the end what controls the move on the spin flip at a vertex is the "local bias or mean field." The spin has the tendency to flip so as to align with \(h^\text{loc}_c \).