Coloring Problem: Analysis of the Metropolis chain.

Recap the problem.

\[G = (V, E) \]

Sample from the space of proper colorings.

i.e. set two neighboring vertices \((u, v) \in E\)
don't have same color.

Notation: \(\{1, 2, 3 \ldots q\} = \text{set of colors} \).

\[\Delta = \max \text{ degree of a vertex } v \in V. \]

\[x = (x_1, x_2, \ldots, x_N) \quad N = |V| \]

and \(x_N \) color assigned to \(N \in V \).

\[\pi(x) = \frac{\Pi(x \text{ is proper})}{Z} \]

\(Z \) counts total # of proper cols.
Recap the proposed algorithm.

1. Start from an initial proper coloring.
2. Select \(N \in V \) uniformly at random.
3. Select a color \(c \in \{1, 2, \ldots, q\} \) uniformly at random.
4. Recolor vertex \(v \) iff \(c \) is an allowed color. (otherwise we do nothing.)

Recap the theorem.

Theorem: Assume \(q > 3\Delta \) then for any initial proper coloring \(\pi \),

\[
\| \mathcal{P}_x^m - \pi \|_{TV} \leq \frac{m}{N} \left(1 - \frac{3\Delta}{q}\right).
\]

dist with initial color \(x \) after \(m \) iterations.

and the mixing time \(T_\varepsilon = \inf \{ m \geq 1 : \max_{x \text{ proper}} \| \mathcal{P}_x^m - \pi \|_{TV} \leq \varepsilon \} \)

satisfies

\[
T_\varepsilon \leq \left(1 - \frac{3\Delta}{q}\right)^{-1} \left\{ N \log N + \log \frac{1}{\varepsilon} \right\}.
\]
Remark: The theorem with a similar but more advanced proof holds for $q > 2\Delta$.

q smaller: out of our scope here and the problem becomes much harder.

(q too small; then breaks down.)

Remark:

1. $q = \Delta + 1 \Rightarrow$ certainly we can color the graph.

But the chain of the edge might not be irreducible. For example:

$\Delta = 2$ and $q = 3$

Can you move out of this configuration by following the edge steps?
It is a fact that for $q > 3\Delta$ the chain is irreducible.

But also for $q > \Delta + 2$ as one can show.

follow up this during the quiz session.

for a little proof.

Remark: The proof of the theorem will use this fact that for $q > 3\Delta$ the chain is irreducible.

The proof will proceed by a coupling argument:

X_m and Y_m - coupled chains.

Recover the property: $\| P_x^m - Q^m \|_V = \inf \mathbb{P}(X_m \neq Y_m)$ [couplings]
Proof of Theorem.

Coupled chains.

1. \((X_m, m \geq 0)\) the chain starting at \(X_0 = x\) with proper initial coloring, and follows the steps of

 - Select \(n \in V\) at random, select \(c \in (1, \ldots, p)\) at random, recolor if \(c\) is allowed.

2. \((Y_m, m \geq 0)\) starts at \(Y_0 \sim U\) and follows the same steps as \((X_m, m \geq 0)\) with

 - The same \(n \in V\) and \(c \in (1, \ldots, p)\) at each time step.

 So the chains are coupled.

Hamming distance between chains at each time step.

\[
d(X_m, Y_m) = \sum_{n \in V} \mathbb{1}(x_n^{(m)} \neq y_n^{(m)})
\]
Since this is some coupling between chain:

\[\| \bar{P}_x^n - \bar{\pi} \|_TV \leq \mathbb{P}(X_m \neq Y_m) \]

at all times

dist of chain \((Y_m, m \geq 0)\)

is \(\bar{\pi}\) because \(\bar{\pi}\)
is sll dist.

Markov inequality:

\[\mathbb{E}(d(X_m, Y_m)) \]

We have a new inequality to start with:

\[\| \bar{P}_x^n - \bar{\pi} \|_TV \leq \mathbb{E}(d(X_m, Y_m)) \]

\[
\leq N \exp \left(-\frac{m}{N} \left(1 - \frac{S \Delta}{\rho} \right) \right)
\]

we are going to bound this expectation now, to prove
Proceed by induction:

• First we assume that $d(X_0, Y_0) = 1$

prove the bound.

• Then we generalize to $d(X_0, Y_0) = r \geq 1$.

• Finally we conclude.

Assume at some $m = 0$, $d(X_0, Y_0) = 1$.

Then we assume $\exists N \in \mathbb{N}$ s.t. $x_n \neq y_n$ (at some N)

and $x_w = y_w \implies w = n$.

$\Rightarrow d(X_1, Y_1) \in \{0, 1, 2\}$.

$\Rightarrow \mathbb{E}(d(X_1, Y_1)) = 0 \cdot \mathbb{P}(d(X_1, Y_1) = 0) + 1 \cdot \mathbb{P}(d(X_1, Y_1) = 1) + 2 \cdot \mathbb{P}(d(X_1, Y_1) = 2) = 1 - \mathbb{P}(d(X_1, Y_1) = 0) + \mathbb{P}(d(X_1, Y_1) = 2)$.
If \(d(x_0, t_0) = 1 \),

\[
\mathbb{E}(d(x, t_1)) = 1 - \mathbb{P}(d(x, t_1) = 0) + \mathbb{P}(d(x, t_1) = 2).
\]

\[
\mathbb{P}(d(x, t_1) = 0) = \frac{1}{N} \frac{\text{# allowed colors}}{q} \geq \frac{1}{N} \frac{9-\Delta}{q}.
\]

\[
\mathbb{P}(d(x, t_1) = 2) \leq \frac{\Delta}{N} \frac{2}{q}.
\]

- If the selected vertex \(w \) is not a neighbor of \(v \), you will do the same recoloring or non-recoloring of \(w \) in both chains and \(d(x, t_1) \) remains 1.

- The event \(d(x, t_1) = 2 \) happens only if \(w \) is a neighbor. It should be that you recolor \(w \) in both \(X \) and \(Y \) or recolor \(w \) in \(X \) and do nothing in \(Y \) or do nothing in both.

The graphs illustrate the relationship between vertices and edges, highlighting the concept of recoloring and its implications on the graph's structure.
\[E(d(x, y)) \leq 1 - \frac{1}{N} (1 - \frac{32}{q}) \]

Generalize to case \(d(x_0, f_0) = 1 \).

Claim by irreducibility (for \(q > 3 \)) or in fact for \(q > 3 + 2 \).

A path between assignments:

\[X_0 \to Z_0 \to Z_1 \to \ldots \to Z_k \to \cdots \to Z_0 \to X_0. \]

Set \(d(Z_0, Z_0) = 1 \); all dist between assignments are equal to 1.

Let evolve the chains by one time unit:

\[X_1 \to Z_1 \to Z_1 \to \ldots \to Z_k \to \cdots \to Z_1 \to X_1. \]

By triangle inequality:

\[d(x, y) \leq d(x, Z_0^{(0)}) + d(Z_0^{(0)}, Z_1^{(0)}) + \ldots + d(Z_k^{(k)}, Z_1^{(1)}). \]

Take the expectation, use linearity, use result (\(\mathbb{E} \)) under \(\mathcal{V} \)

\[\mathbb{E}(d(x, y)) \leq 1 - \frac{1}{N} (1 - \frac{32}{q}) \]
Conclusion of proof:

Remark by homogeneity of the Markov chain:

$$\mathbb{E}(d(X_{m+1}, Y_{m+1}) \mid d(X_m, Y_m) = r)$$

$$\leq r \left(1 - \frac{1}{N} (1 - \frac{3d}{9}) \right)$$

Average over r:

$$\sum_{r} \mathbb{E}(d(X_{m+1}, Y_{m+1}) \mid d(X_m, Y_m) = r) \mathbb{P}(d(X_m, Y_m) = r)$$

$$= \mathbb{E}(d(X_{m+1}, Y_{m+1}))$$

$$\leq \left(1 - \frac{1}{N} (1 - \frac{3d}{9}) \right) \sum_{r} r \mathbb{P}(d(X_m, Y_m) = r) \mathbb{E}(d(X_m, Y_m))$$

$$= D.$$
We found:

\[E(d(x_{m_0}, y_{m_0})) \leq E(d(x_0, t)) \left\{ 1 - \frac{1}{N} (1 - \frac{32}{9}) \right\}. \]

\[\leq \frac{E(d(x_0, t))}{\frac{1}{N} (1 - \frac{32}{9})} \]

\[\leq N \]

Total # of vertex.

\[2^D \leq E(d(x_{m_0}, y_{m_0})) \leq N \left(1 - \frac{1}{N} (1 - \frac{32}{9}) \right)^N. \]

Use \(1 - x \leq e^{-x} \)

QED. \(\Box \)