EPFL

Computer Networks - Midterm

November 1, 2019
Duration: 2h15m

- This is a closed-book exam.
- Please write your answers on these sheets in a readable way, in English or in French.
- You can use extra sheets if necessary (don't forget to put your name on them).
- The total number of points is 600 .
- This document contains 20 pages.
- Good luck!

Last Name:

First Name:

SCIPER No

1 Short questions

For each question, please circle a single best answer.

1. What is an Internet eXchange Point (IXP)?
(a) An end-system that is connected to the Internet through multiple ISPs.
(b) A special packet switch that provides performance guarantees.
(c) A large ISP that peers with many other ISPs.
(d) An entity that provides physical connections between ISPs.
2. Why does the Internet architecture use layers?
(a) Layers reduce complexity and increase flexibility.
(b) Layers reduce packet delay and increase average throughput.
(c) Both of the above.
(d) No particular reason.
3. End-systems A and B are connected through one physical link. Adding a second link, of the same properties, in parallel to the first one, may significantly improve:
(a) The propagation delay from A to B.
(b) The average throughput from A to B.
(c) Both of the above.
(d) None of the above.
4. End-system A is continuously sending packets back-to-back to end-system B. If A doubles the size of the packets, the following will happen:
(a) The transmission delay of each packet will double.
(b) The average throughput from A to B will double.
(c) The average throughput from A to B will be reduced by half.
(d) None of the above.
5. Which of the following is a valid packet that you may observe leaving your computer (e.g., using Wireshark)?
(a) An HTTP GET request, encapsulated in a DNS message.
(b) An HTTP GET request, encapsulated in a TCP segment.
(c) An HTTP GET request, encapsulated in a UDP segment.
(d) A TCP segment, encapsulated in an HTTP GET request.
6. All the mappings from epfl.ch DNS names to IP addresses expire at the same time. Which of the following may happen over the next few hours as a result?
(a) Authoritative DNS servers for epfl.ch may receive a higher rate of DNS requests.
(b) TLD servers for . ch may receive a higher rate of DNS requests.
(c) Root DNS servers may receive a higher rate of DNS requests.
(d) All of the above.
7. What does it mean that peer-to-peer (P 2 P) file distribution "scales better" than client-server?
(a) P2P file distribution always takes less time.
(b) P2P file distribution always takes the same or less time.
(c) As the number of downloaders increases, P2P file distribution time stays the same.
(d) As the number of downloaders increases, P2P file distribution time increases at a lower rate.
8. What is the minimum number of sockets that a DNS server process must open?
(a) 1 .
(b) 1 listening socket and 1 connection socket.
(c) 1 listening socket and 1 connection socket per DNS client it is communicating with.
(d) 1 listening socket and 1 connection socket per DNS client and DNS server it is communicating with.
9. End-systems A and B need reliable data delivery (RDD) over a network that may corrupt but never drops packets. Which of the following RDD elements is not needed in this scenario?
(a) Checksums.
(b) Timeouts.
(c) Retransmissions.
(d) Acknowledgments.
10. End-systems A and B communicate over one of the two pipelined transport-layer protocols that we saw in class. Is it possible that several segments get lost without resulting in any timeout?
(a) No.
(b) Yes, if A and B communicate over Go-back-N.
(c) Yes, if A and B communicate over Selective Repeat.
(d) Yes, if the network between A and B never reorders packets.

2 Web browsing

Alice's computer is somewhere outside EPFL or ETHZ. It accesses the web through proxy web server proxy. net (whose IP address it knows), which is in the same network as Alice. Alice's web browser does NOT cache web pages. All end-systems in Alice's network use 1.1.1.1 as their local DNS server.

Alice uses her web browser to access web page www.epfl.ch, which contains 1 embedded image with URL www.epfl.ch/1.jpg. Right after, she uses her web browser to access web page www. ethz.ch, which contains 1 embedded image with URL www.ethz.ch/1.jpg. The two images happen to be identical (i.e., identical copies of the same image).

Question 1 (100 points):

What is the maximum and what is the minimum number of application-layer messages (sent by any end-system, including any DNS server, and any proxy or origin web server) that may result from Alice's actions? Do not count TCP connection setup requests and responses. Justify your answer. State the role of each message, which end-system sends it, and which one receives it.

Question 2 (25 points):

How many sockets are created and/or used on the EPFL web server as a result of Alice's actions? What is the type and purpose of each socket? What IP address(es) and port number(s) is each socket associated with?

Question 3 (25 points):
Bob opens a terminal on his computer and types "dig epfl.ch MX". In return, he gets the following answer:

```
my-pc:Desktop me$ dig epfl.ch MX
; <<> DiG 9.10.6<<> epfl.ch MX
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status : NOERROR, id: 3105
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 2, ADDITIONAL: 11
```

; ; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
; epfl.ch. IN MX
;; ANSWER SECTION:

epfl.ch.	86256	IN	MX	$50 \mathrm{mx} 1 . \mathrm{epfl} . \mathrm{ch}$.
epfl.ch.	86256	IN	MX	$50 \mathrm{mx} 2 . \mathrm{epfl.ch}$.
epfl.ch.	86256	IN	MX	$50 \mathrm{mx} 3 . \mathrm{epfl.ch}$.

; ; AUTHORITY SECTION:
$\begin{array}{lllll}\text { epfl.ch. } & 78946 & \text { IN } & \text { NS } & \text { stisun1.epfl.ch. } \\ \text { epfl.ch. } & 78946 & \text { IN } & \text { NS } & \text { stisun2.epfl.ch. }\end{array}$
; ; ADDITIONAL SECTION:

mx1.epfl.ch.	86256	IN	A	128.178 .166 .20
mx2.epfl.ch.	86256	IN	A	128.178 .166 .21
mx3.epfl.ch.	86256	IN	A	128.178 .166 .22
stisun1.epfl.ch.	78946	IN	A	128.178 .15 .8
stisun2.epfl.ch.	78946	IN	A	128.178 .15 .7

; ; Query time: 13 msec
; ; SERVER: 1.1.1.1\#53(1.1.1.1)
;; WHEN: Sun Oct 27 20:27:07 CET 2019
; ; MSG SIZE rcvd: 360

- What is mxl.epfl.ch? Think of one socket that you are certain is active (has been created and not deleted) on this end-system. What is its type and purpose? What IP address(es) and port number(s) is it associated with?
- What is stisun2.epfl.ch? Think of one socket that you are certain is active on this endsystem. What is its type and purpose? What IP address(es) and port number(s) is it associated with?

3 Transport layer

Consider two end-systems A and B. A process running on A has an infinite amount of data to send to a process running on B. The two processes communicate over a pipelined transport-layer protocol with the following properties:

- Window size N.
- Retransmission timeout $1.01 R T T$, where $R T T$ is the round-trip time between A and B.
- Sequence numbers $0-1023$.
A 's transport layer generates data segments of size L. Header size is insignificant relative to L. The transmission delay of any single segment from A to B is insignificant relative to the $R T T$ between A and B.

The following loss pattern repeats indefinitely: The first $N / 2$ original segment transmissions sent from A to B are lost, the next $N / 2$ successfully delivered, the next $N / 2$ lost, the next $N / 2$ successfully delivered, and so on. Retransmitted segments are never lost or corrupted. ACK segments sent from B to A are never lost or corrupted. For example, if $N=4$, the segments with the following SEQs are lost the first time they are transmitted: $0,1,4,5,8,9,12,13$, and so on. No other segments are lost or corrupted.

Question 1 (100 points):

Suppose the window size is $N=4$. Complete the diagrams in Figs. 1 and 2 to show what happens if A and B communicate over Go-back-N (GBN), and if they communicate over Selective Repeat (SR). Please show:

- All transmitted (data and ACK) segments with their SEQ or ACK numbers.
- All segments that are lost.
- Timeout events.
- Changes in window status.

Show only until (but not including) the moment where A sends segment with SEQ 8 for the first time.
GBN

Figure 1: Sequence diagram to be completed for Question 1 for GBN.

SR

Figure 2: Sequence diagram to be completed for Question 1 for SR.

Question 2 (25 points):

In the scenario of the last question, what is the average throughput achieved by the communicating processes if they communicate over GBN? if they communicate over SR? Express the average throughput as a function of L and $R T T$. Justify your answer. Be careful: in this context, the average throughput is the average rate at which the process running on B receives data sent by the process running on A.

Question 3 (50 points):

Generalize your answer to Question 2 to any window of size N : what is the average throughput achieved by the communicating processes if they communicate over GBN? if they communicate over SR? Express the average throughput as a function of $L, R T T$, and N. Justify your answer.

Question 4 (25 points):

Suppose that, at some point, one of the packet switches traversed by A-to- B traffic becomes congested (due to traffic exchanged by other end-systems), so, all the packets that arrive at the packet switch experience significant queuing delays. In this situation, do you think that it would create less network congestion if A and B communicated over GBN or over SR? Justify your answer.

4 Delay computation

Consider the network topology in Figure 3.

- End-system A stores a file of size F bits.
- N other end-systems ("downloaders"), $D_{i}, i=1 . . N$, want to download this file.
- "File distribution time" is the amount of time that elapses from the moment A sends its first bit until the moment the last downloader receives the last bit of the file.
- When an end-system decides to send a set of packets, it sends them back to back, i.e., it transmits the first bit of one packet as soon as it finishes transmitting the last bit of the previous one.
- Packet switch S performs store-and-forward packet switching and introduces insignificant processing delays. S has one infinite-size queue per output link. Whenever a packet arrives at S, S determines the output link and places the packet in the corresponding queue.
- There is no packet loss or corruption.
- Each link has transmission rate R, propagation speed c (both directions) and length ℓ.

Figure 3: Network topology for Problem 4.

We will examine two different ways to distribute the file:

- In client/server mode,
- A creates N copies of the file.
- A sends one copy of the file to each downloader. To do so, A splits each of the N file copies into N chunks. Each chunk has size $\frac{F}{N}=L$ bits and fits exactly in a single packet. Then, A sends all the chunks back to back.
- In peer-to-peer (P 2 P) mode,
- A distributes pieces of the file to the downloaders:
* A splits the file into N chunks: $C_{i}, i=1 . . N$. Each chunk has size $\frac{F}{N}=L$ bits and fits exactly in a single packet.
* Chunk C_{i} is destined to downloader D_{i}.
* A sends all the chunks back to back.
- The moment the last downloader receives the last bit of its chunk, all downloaders start distributing their chunks to each other:
* Downloader D_{i} creates $N-1$ copies of chunk $C_{i}: C_{i j}, j=1 . . N, j \neq i$.
* Copy $C_{i j}$ is destined to downloader D_{j}.
* D_{i} sends all the copies back to back starting with $C_{i,(i+1) \% N}$, then $C_{i,(i+2) \% N}$, and so on. For example, D_{3} would send $C_{34}, C_{35}, \ldots C_{3 N}, C_{31}, C_{32}$.

Question 1 (50 points):

Suppose the file distribution happens in client/server mode. What is the file distribution time? Justify your answer.

Question 2 (50 points):

Suppose the file distribution happens in P2P mode. What is the lower bound of the file distribution time (based on the formula we computed in class)? Justify your answer.

Question 3 (50 points):
Suppose the file distribution happens in P2P mode. What is the file distribution time? Justify your answer.

Question 4 (50 points):

Consider again the P2P scenario, but with the following modification: αN downloaders are "helpful," i.e., want to help A distribute the file, while $(1-\alpha) N$ downloaders are "leechers," i.e., want to download the file without helping distribute it. $\frac{1}{\alpha}$ is an integer and αN is an integer.

Can you propose a modification to the P2P mode that will enable the file to be distributed to all the downloaders-helpful and leechers-as fast as possible? What will be the file distribution time? Justify your answer.

Assume that: (1) A knows which of the downloaders are helpful and which ones are leechers, before file distribution begins. (2) All the helpful downloaders start distributing at the same time. Note that we are not looking for a scheme that punishes/disadvantages the leechers, like tit-for-tat etc.

