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1. a) We have

P(X 6= Y ) = 1− P(X = Y ) = 1−
∑
i∈S

ξi = 1−
∑
i∈S

min(µi, νi)

=
∑

i∈S :µi>νi

(µi − νi) =
∑

i∈S : νi>µi

(νi − µi)

where the last two equalities hold because both µ and ν are distributions. Summing these last two
equalities, we obtain

2P(X 6= Y ) =
∑
i∈S
|µi − νi| = 2 ‖µ− ν‖TV

b) Observe first that if
∑

i∈S ξi = 1, then X = Y with probability one. When
∑

i∈S ξi < 1, we
obtain for i ∈ S:

P(X = i) = P(X = Y = i) +
∑
j∈S\i

P(X = i, Y = j) = ξi +
∑
j∈S\i

(µi − ξi) (νj − ξj)
1−

∑
k∈S ξk

= ξi +
µi − ξi

1−
∑

k∈S ξk

∑
j∈S\i

(νj − ξj) = ξi +
µi − ξi

1−
∑

k∈S ξk

1− νi −
∑
j∈S

ξj + ξi


= ξi + (µi − ξi)−

(µi − ξi) (νi − ξi)
1−

∑
k∈S ξk

= µi

as (µi − ξi) (νi − ξi) = 0 necessarily. A similar reasoning shows that P(Y = j) = νj for all j ∈ S.

c) We have

C̃(P ) = sup
µ,ν

‖µ−ν‖TV>0

‖µP − νP‖TV

‖µ− ν‖TV
≥ sup

i 6=k∈S

‖δiP − δkP‖TV

‖δi − δk‖TV

= sup
i 6=k∈S

‖δiP − δkP‖TV = sup
i 6=k∈S

‖Pi − Pk‖TV = C(P )

d) For any i, k ∈ S and A ⊂ S, we have

Pi(A)− Pk(A) ≤ sup
A⊂S

Pi(A)− Pk(A) = ‖Pi − Pk‖TV

where the right-hand side is either zero (for i 6= k) or less than C(P ) by definition. Therefore we
have Pi(A)−Pk(A) ≤ C(P ) 1{i 6=k}. Averaging this inequality over values of i and k with respect to
a coupling between two random variables X and Y where X has the marginal distribution µ and
Y has the marginal distribution ν leads to∑
i,k

P (X = i, Y = k)Pi(A)−
∑
i,k

P (X = i, Y = k)Pk(A) ≤ C(P )
∑
i,k

P (X = i, Y = k)1{i 6=k} ⇒

∑
i

µiPi(A)−
∑
k

νkPk(A) ≤ C(P )
∑
i 6=k

P (X = i, Y = k) ⇒

µP (A)− νP (A) ≤ C(P )P (X 6= Y )
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If we take the coupling designed in the first step, we have P (X 6= Y ) = ‖µ−ν‖TV. Then, by taking
the supremum over A ⊂ S on both sides of the inequality, we obtain

‖µP − νP‖TV = sup
A⊂S

(µP (A)− νP (A)) ≤ C(P ) ‖µ− ν‖TV ⇒ ‖µP − νP‖TV

‖µ− ν‖TV
≤ C(P )

where we assume that µ 6= ν. Because the inequality holds for any distributions µ and ν such that
µ 6= ν, we have

C̃(P ) = sup
µ,ν

‖µ−ν‖TV>0

‖µP − νP‖TV

‖µ− ν‖TV
≤ C(P )

e) For any i ∈ S we have

‖Pni − π‖TV

‖Pn−1i − π‖TV

=
‖Pn−1i P − πP‖TV

‖Pn−1i − π‖TV

≤ sup
µ,ν

‖µ−ν‖TV>0

‖µP − νP‖TV

‖µ− ν‖TV
= C(P )

which leads to (replacing C(P ) by C for convenience)

‖Pni − π‖TV ≤ C ‖Pn−1i − π‖TV ≤ ... ≤ Cn−1 ‖Pi − π‖TV ≤ Cn ‖δi − π‖TV

f) C(P ) = |1 − p − q|(= λ∗) which is 0 when p + q = 1 (i.e., when we have complete symmetry
between two states) and is 1 when p = q = 0 (i.e. when there is no self-loop and the chain is
periodic with period 2).

g) Given the transition matrix we have

C(P ) = max
{

1− p, 1

2

(1

2
+ p+ |1

2
− p|

)}
By observing that 1

2

(
1
2 + p+ |12 − p|

)
= max{12 , p}, we have

C(P ) = max{1− p, p}(= λ∗)

which is 1 when p = 0 (i.e., when the chain not irreducible) or p = 1 (i.e. when there is no self-loop
and the chain is periodic with period 2). Moreover, the minimum value of C(P ) is equal to 0.5 and
happens at p = 0.5, when the transition probabilities from side states to the central state is the
same as the probability of the opposite transitions.

h) For N = 3 we have C(P ) = p+q+|p−q|
2 = max{p, 1−p} which is 1 when p = 0 or p = 1 (i.e. when

there is either only the clockwise path or only the counterclockwise path, and hence the chain is
periodic with period 3) and has its minimum value equal to 0.5 and at p = 0.5 (i.e. when there is
complete symmetry). For N > 3, C(P ) is always 1, which means that there always exists two differ-
ent initial distributions that would not get closer after one transition – can you find those for N = 5?

2. a) In the case p = 0, the chain becomes a cyclic random walk with period 2. Since the chain is
periodic, it cannot be ergodic in this case.

In the case p = 1, we obtain a chain with three equivalence classes, and the chain is thus not
irreducible, so not ergodic.
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Figure 1: State diagram for the Markov chain for p = 0
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Figure 2: State diagram for the Markov chain for p = 1

In the case 0 < p < 1, the chain is aperiodic since there are self-loops at states 0 and 3. It is
irreducible since all states communicate. Finally, since the number of states is finite, the chain is
positive-recurrent. Hence, with this choice of p, the chain is ergodic.

b) The transition matrix is given by

P =


p 1−p

2
1−p
2 0

1−p
2 0 p 1−p

2
1−p
2 p 0 1−p

2

0 1−p
2

1−p
2 p


Noting that the transition matrix is doubly stochastic (rows and columns of P sum to 1), we deduce
that π is the uniform distribution on S.

So π = (14 ,
1
4 ,

1
4 ,

1
4).

c) For any two states i, j ∈ S, one can see from the transition graph that we have pij = pji. Since
the stationary distribution is the uniform one, detailed balance holds since πipij = πjpij = πjpji.
The chain is thus reversible.
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d) To find the eigenvalues of P , we find the characteristic polynomial of P , so det(P − λI). We
can compute this determinant using the cofactors formula to get

det(P − λI) =

∣∣∣∣∣∣∣∣
p− λ 1−p

2
1−p
2 0

1−p
2 −λ p 1−p

2
1−p
2 p −λ 1−p

2

0 1−p
2

1−p
2 p− λ

∣∣∣∣∣∣∣∣
= (p− λ)

∣∣∣∣∣∣
−λ p 1−p

2

p −λ 1−p
2

1−p
2

1−p
2 p− λ

∣∣∣∣∣∣− 1− p
2

∣∣∣∣∣∣
1−p
2 p 1−p

2
1−p
2 −λ 1−p

2

0 1−p
2 p− λ

∣∣∣∣∣∣+
1− p

2

∣∣∣∣∣∣
1−p
2 −λ 1−p

2
1−p
2 p 1−p

2

0 1−p
2 p− λ

∣∣∣∣∣∣
= λ4 − λ2 + 2λp3 − 2p3 − λ2p2 + p2 − 2λ3p+ 2λ2p.

Since we know λ0 = 1, we know that there will be a factor (λ− 1) in the characteristic polynomial.
We have

det(P − λI) = λ4 − λ2 + 2λp3 − 2p3 − λ2p2 + p2 − 2λ3p+ 2λ2p

= (λ− 1)(λ3 + λ2 − λ22p− λp2 + 2p3 − p2).

Letting f(λ) = λ3 + λ2(1− 2p)− λp2 + 2p3− p2 and noting that f(p) = 0, we can further factor as

f(λ) = (λ− p)(λ2 + λ(1− p)− 2p2 + p) = (λ− p)(λ+ p)(λ− (2p− 1)).

Overall, we have

det(P − λI) = (λ− 1)f(λ) = (λ− 1)(λ− p)(λ+ p)(λ− (2p− 1)),

so that
λ0 = 1, λ1 = −p, λ2 = p, λ3 = 2p− 1.

We find that λ∗ = max{p, |2p− 1|} = max{p, 2p− 1, 1− 2p} = max{p, 1− 2p} since p ≥ 2p− 1 for
0 ≤ p ≤ 1. So γ = 1− λ∗ = min{1− p, 2p}.

e) Using the bound seen in class together with the result from part b), we have

max
i∈S
‖Pni − π‖TV ≤

λn∗
2
√
πi

= λn∗ = (1− γ)n ≤ e−γn.

To have maxi∈S ‖Pni − π‖TV ≤ ε, we need

e−γn ≤ ε ⇐⇒ n ≥ 1

γ
log(1/ε) =

1

min{1− p, 2p}
log(1/ε).

The convergence is fastest for the value of p which minimizes 1
min{1−p,2p} , or equivalently we want

max0<p<1 min{1−p, 2p}. Since 2p is increasing and 1−p is decreasing, we can easily find graphically
that the maximum is attained when both 1− p and 2p are equal, which happens at p = 1

3 .
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