1. a) The process Y is a Markov chain. Here is the proof:

$$\mathbb{P}(Y_{n+1} = j|Y_n = i, Y_{n-1} = i_{n-1}, \ldots, Y_1 = i_1, Y_0 = 0)$$

$$= \mathbb{P}(S_{2n+2} = j|S_{2n} = i, S_{2n-2} = i_{n-1}, \ldots, S_2 = i_1, S_0 = 0)$$

$$= \mathbb{P}(S_{2n} + X_{2n+1} + X_{2n+2} = j|S_{2n} = i, S_{2n-2} = i_{n-1}, \ldots, S_2 = i_1, S_0 = 0)$$

$$= \mathbb{P}(X_{2n+1} + X_{2n+2} = j - i)$$

and also

$$\mathbb{P}(Y_{n+1} = j|Y_n = i) = \mathbb{P}(S_{2n+2} = j|S_{2n} = i) = \mathbb{P}(S_{2n} + X_{2n+1} + X_{2n+2} = j|S_{2n} = i)$$

$$= \mathbb{P}(X_{2n+1} + X_{2n+2} = j - i)$$

so the process Y is a Markov chain. Moreover,

$$\mathbb{P}(X_{2n+1} + X_{2n+2} = j - i) = \begin{cases} 1/4, & \text{if } |j - i| = 2, \\ 1/2, & \text{if } i = j, \\ 0, & \text{otherwise.} \end{cases}$$

These probabilities do not depend on n, so the process Y is a time-homogeneous Markov chain.

b) The process Z is a Markov chain. Actually, for $n \geq 0$, we have $Z_{n+1} = (-1)^{S_n + X_{n+1}} = (-1)^{S_n}(-1)^{X_{n+1}} = -Z_n$ always, as $(-1)^{X_{n+1}} = -1$, irrespective of the value of $X_{n+1} \in \{-1, +1\}$. The process Z is therefore deterministic, constantly alternating between the two states $+1$ and -1, and

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

c) The process T is not a Markov chain. Here is why: on the one hand, we have (by counting the number of possible paths):

$$\mathbb{P}(T_4 = 1|T_3 = 1, T_2 = 1) = \frac{\mathbb{P}(T_4 = 1, T_3 = 1, T_2 = 1)}{\mathbb{P}(T_3 = 1, T_2 = 1)} = \frac{3/16}{2/8} = \frac{3}{4}$$

On the other hand, we have:

$$\mathbb{P}(T_4 = 1|T_3 = 1, T_2 = 0) = \frac{\mathbb{P}(T_4 = 1, T_3 = 1, T_2 = 0)}{\mathbb{P}(T_3 = 1, T_2 = 0)} = \frac{1/16}{1/8} = \frac{1}{2} \neq \frac{3}{4}$$

so the process T is not a Markov chain.

d) The process W is exactly the same as the process Y, so it is a Markov chain.
2. a) Transition matrix:

\[P = \begin{pmatrix} 1 - p & p \\ q & 1 - q \end{pmatrix} \]

Transition graph:

\[\begin{array}{c}
0 \quad \xrightarrow{1 - p} \quad 1 \\
1 \quad \xrightarrow{p} \quad 0
\end{array} \]

b) \(X_{n+1} \) is independent of \(X_n \) if and only if for all \((i, j) \in S^2\), it holds that \(P(X_{n+1} = j | X_n = i) = P(X_{n+1} = j) \). Therefore, we have the necessary condition \(P(X_{n+1} = 1 | X_n = 1) = P(X_{n+1} = 1 | X_n = 0) \), that is: \(1 - q = p \), and thus \(p + q = 1 \).

Conversely, the transition matrix \(P = \begin{pmatrix} 1 - p & p \\ 1 - p & p \end{pmatrix} \) satisfies the aforementioned independence condition. Note that the time-homogeneity condition of the Markov chain extends the independence.

c) \(P \) has the characteristic polynomial \(\chi_P(X) = ((1 - p) - X)((1 - q) - X) - pq \), that is:

\[\chi_P(X) = X^2 - (2 - p - q)X + 1 - p - q \]

whose discriminant is positive since \(p, q > 0 \) and:

\[\Delta = (1 + 1 - p - q)^2 - 4(1 - p - q) = (p + q)^2 \]

Thus there are two distinct eigenvalues: \(\{1, 1 - p - q\} \), with respective eigenvectors \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \) and \(\begin{pmatrix} p \\ -q \end{pmatrix} \).

Writing \(D = \begin{pmatrix} 1 & 0 \\ 0 & 1 - p - q \end{pmatrix} \) and \(U = \begin{pmatrix} 1 & p \\ 1 & -q \end{pmatrix} \) we have:

\[P = UD U^{-1} \]

where:

\[U^{-1} = \frac{1}{p + q} \begin{pmatrix} q & p \\ 1 & -1 \end{pmatrix} \]

Thus for \(n \in \mathbb{N} \):

\[P_{0,0}^{(n)} = [P^n]_{0,0} = [UD^n U^{-1}]_{0,0} = \frac{q + p(1 - p - q)^n}{p + q} \]

D) We have for \(N \in \mathbb{N}^* \):

\[\sum_{n=1}^{N} P_{0,0}^{(n)} = \frac{1}{p + q} \left(qN + p(1 - p - q) \frac{1 - (1 - p - q)^{N-1}}{p + q} \right) \]

Because \(0 < p < 1, 0 < q < 1 \), we have \(|1 - p - q| < 1 \) and thus the second term converges when \(N \to \infty \). As for the first term, it converges only when \(q = 0 \), which is not the case by assumption. Therefore:

\[\sum_{n \geq 1} P_{0,0}^{(n)} = +\infty \]

and we conclude that state 0 is recurrent.
e) We have:

\[f_{00}^{(n)} = P(X_n = 0, X_{n-1} = \cdots = X_1 = 1 | X_0 = 0) \]
\[= P(X_n = 0, X_{n-1} = \cdots = X_2 = 1 | X_1 = 1, X_0 = 0) P(X_1 = 1 | X_0 = 0) \]
\[= P(X_n = 0, X_{n-1} = \cdots = X_2 = 1 | X_1 = 1) P(X_1 = 1 | X_0 = 0) \]
\[= \cdots \]
\[= P(X_n = 0 | X_{n-1} = 1) P(X_{n-2} = 1 | X_{n-1} = 1) \cdots P(X_1 = 1 | X_0 = 0) \]

\[= \begin{cases} p_{1,0} \cdot p_{1,1}^n \cdot p_{0,1} & (n > 1) \\ p_{0,0} & (n = 1) \end{cases} \]

Thus:

\[f_{00}^{(n)} = \begin{cases} pq (1 - q)^{n-2} & (n > 1) \\ 1 - p & (n = 1) \end{cases} \]

Then:

\[f_{00} = \sum_{n \geq 1} f_{00}^{(n)} = pq \frac{1}{1 - (1 - q)} + (1 - p) = 1 \]

We thus find again that state 0 is recurrent.

f) We have:

\[\mu_0 = \mathbb{E}(T_0 | X_0 = 0) = \sum_{n \geq 1} n P(T_0 = n | X_0 = 0) = f_{00}^{(1)} + \sum_{n \geq 2} n f_{00}^{(n)} \]

Notice the following power series relationship for \(x \in (-1, 1) \):

\[\sum_{n \geq 0} x^n = \frac{1}{1 - x} \implies x \frac{d}{dx} \sum_{n \geq 0} x^n = x \frac{d}{dx} \frac{1}{1 - x} \implies \sum_{n \geq 0} n x^n = \frac{x}{(1 - x)^2} \]

and rewrite the former expression as:

\[\mu_0 = \mathbb{E}(T_0 | X_0 = 0) = (1 - p) + pq \sum_{n \geq 2} (n - 2 + 2)(1 - q)^{n-2} \]

\[= (1 - p) + pq \sum_{n \geq 0} n(1 - q)^n + 2pq \sum_{n \geq 0} (1 - q)^n \]

\[= 1 - p + pq \frac{1 - q}{q^2} + 2pq \frac{1}{q} \]

in conclusion:

\[\mu_0 = \mathbb{E}(T_0 | X_0 = 0) = 1 + \frac{p}{q} \]

This is finite since \(q > 0 \), so state 0 is positive-recurrent.
g) Considering the two cases:

1. when \(p + q = 1 \), we have \(f^{(n)}_{00} = q(1-q)^{n-1} \) for \(n \geq 1 \), so \(T_0 \) is a geometric random variable with parameter \(q \) (conditioned on the fact that \(X_0 = 0 \)). Correspondingly, \(\mu_0 = \mathbb{E}(T_0|X_0 = 0) = \frac{1}{q} \). So if \(q \) is close to 0, then \(p \) is close to 1 and there is a higher chance to jump to state 1 and lower chance to go back to state 0. We see that the mean \(\mu_0 \) is getting higher in such case. Conversely, when \(q \) is close to 1, \(p \) is close to 0 and the process tends to stick to state 0.

2. when \(p = q \) we simply have \(\mu_0 = 2 \). Indeed: even if, for instance, \(p \) is close to 0 a very unlikely jump to state 1 means to get stuck in 1 for a proportional "higher" period - all in all, we get a mean of 2 steps.

3. a) Let \(i \) be a recurrent state and \(j \) be another state in the same equivalence class. \(i \) and \(j \) communicate, so there exist \(n_1, n_2 \geq 1 \) such that \(p^{(n_1)}_{ij} > 0 \) and \(p^{(n_2)}_{ij} > 0 \). As \(i \) is recurrent, we know that

\[
\sum_{n \geq 1} p^{(n)}_{ii} = +\infty
\]

Besides, for every \(n \geq 1 \), we have \(p^{(n_1+n+n_2)}_{jj} \geq p^{(n_1)}_{ji} p^{(n)}_{ii} p^{(n_2)}_{ij} \), so because of the assumptions made:

\[
\sum_{n \geq 1} p^{(n_1+n+n_2)}_{jj} \geq p^{(n_1)}_{ji} \left(\sum_{n \geq 1} p^{(n)}_{ii} \right) p^{(n_2)}_{ij} = +\infty
\]

and we therefore also have \(\sum_{n \geq 1} p^{(n)}_{jj} = +\infty \), i.e., \(j \) is recurrent.

b) We imitate the proof given in the lectures. Let \(A_m = \{ X_m = j \} \) and \(B_m = \{ X_m = j, X_r \neq j \text{ for } 1 \leq r < m \} \). The events \(B_m \) are disjoint, so

\[
\mathbb{P}(A_m|X_0 = i) = \sum_{r=1}^{m} \mathbb{P}(A_m \cap B_r | X_0 = i) = \sum_{r=1}^{m} \mathbb{P}(A_m|B_r, X_0 = i) \mathbb{P}(B_r|X_0 = i) = \sum_{r=1}^{m} \mathbb{P}(A_m|X_r = j) \mathbb{P}(B_r|X_0 = i)
\]

where we have used the Markov condition in the last equality. Hence

\[
P^{(m)}_{ij} = \sum_{r=1}^{m} P^{(m-r)}_{jj} f^{(r)}_{ij}
\]

Multiplying by \(s^m, |s| < 1 \) and summing over \(m \), we find

\[
P_{ij}(s) = P_{jj}(s) F_{ij}(s)
\]

which is the desired result.
c)

1. If j is recurrent, we have $f_{jj} = 1$ by definition and we know from $P_{jj}(s) = 1 + P_{jj}(s)F_{jj}(s)$ that $P_{jj}(1) = +\infty$. Then $P_{ij}(1) = +\infty$ as long as $F_{ij}(1) > 0$. This means that $\sum_{n \geq 0} p_{ij}^{(n)} = +\infty$ for i s.t. $f_{ij} > 0$ (use Abel’s theorem like in class to take $\lim_{s \uparrow 1}$).

2. If j is transient, $P_{jj}(1) < +\infty$ (because $f_{jj} < 1$) and since $F_{ij}(1) \leq 1$, this means $P_{ij}(1) < +\infty$ which in turn means $\sum_{n \geq 0} p_{ij}^{(n)} < +\infty$.