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1. a) The process Y is a Markov chain. Here is the proof:

P(Yn+1 = j|Yn = i, Yn−1 = in−1, . . . , Y1 = i1, Y0 = 0)

= P(S2n+2 = j|S2n = i, S2n−2 = in−1, . . . , S2 = i1, S0 = 0)

= P(S2n +X2n+1 +X2n+2 = j|S2n = i, S2n−2 = in−1, . . . , S2 = i1, S0 = 0)

= P(X2n+1 +X2n+2 = j − i)

and also

P(Yn+1 = j|Yn = i) = P(S2n+2 = j|S2n = i) = P(S2n +X2n+1 +X2n+2 = j|S2n = i)

= P(X2n+1 +X2n+2 = j − i)

so the process Y is a Markov chain. Moreover,

P(X2n+1 +X2n+2 = j − i) =


1/4, if |j − i| = 2,

1/2, if i = j,

0, otherwise.

These probabilities do not depend on n, so the process Y is a time-homogeneous Markov chain.

b) The process Z is a Markov chain. Actually, for n ≥ 0, we have Zn+1 = (−1)Sn+Xn+1 =
(−1)Sn (−1)Xn+1 = −Zn always, as (−1)Xn+1 = −1, irrespective of the value of Xn+1 ∈ {−1,+1}.
The process Z is therefore deterministic, constantly alternating between the two states +1 and −1,
and

P =

(
0 1
1 0

)
c) The process T is not a Markov chain. Here is why: on the one hand, we have (by counting the
number of possible paths):

P(T4 = 1|T3 = 1, T2 = 1) =
P(T4 = 1, T3 = 1, T2 = 1)

P(T3 = 1, T2 = 1)
=

3/16

2/8
=

3

4

On the other hand, we have:

P(T4 = 1|T3 = 1, T2 = 0) =
P(T4 = 1, T3 = 1, T2 = 0)

P(T3 = 1, T2 = 0)
=

1/16

1/8
=

1

2
6= 3

4

so the process T is not a Markov chain.

d) The process W is exactly the same as the process Y , so it is a Markov chain.
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2. a) Transition matrix:

P =

(
1− p p
q 1− q

)
Transition graph:

0 1

p

q

1− p 1− q

b) Xn+1 is independent of Xn if and only if for all (i, j) ∈ S2, it holds that P(Xn+1 = j|Xn =
i) = P(Xn+1 = j). Therefore, we have the necessary condition P(Xn+1 = 1|Xn = 1) = P(Xn+1 =
1|Xn = 0), that is: 1− q = p, and thus p+ q = 1.

Conversely, the transition matrix P =

(
1− p p
1− p p

)
satisfies the aforementioned independence con-

dition. Note that the time-homogeneity condition of the Markov chain extends the independence.

c) P has the characteristic polynomial χP (X) = ((1− p)−X)((1− q)−X)− pq, that is:

χP (X) = X2 − (2− p− q)X + 1− p− q

whose discriminant is positive since p, q > 0 and:

∆ = (1 + 1− p− q)2 − 4(1− p− q) = (p+ q)2

Thus there are two distinct eigenvalues: {1, 1−p−q}, with respective eigenvectors

(
1
1

)
and

(
p
−q

)
.

Writing D =

(
1 0
0 1− p− q

)
and U =

(
1 p
1 −q

)
we have:

P = UDU−1

where:

U−1 =
1

p+ q

(
q p
1 −1

)
Thus for n ∈ N:

p
(n)
0,0 = [Pn]0,0 = [UDnU−1]0,0 =

q + p(1− p− q)n

p+ q

d) We have for N ∈ N∗:
N∑

n=1

p
(n)
00 =

1

p+ q

(
qN + p(1− p− q)1− (1− p− q)N−1

p+ q

)
Because 0 < p < 1, 0 < q < 1, we have |1 − p − q| < 1 and thus the second term converges when
N →∞. As for the first term, it converges only when q = 0, which is not the case by assumption.
Therefore: ∑

n≥1
p
(n)
00 = +∞

and we conclude that state 0 is recurrent.
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e) We have:

f
(n)
00 = P(Xn = 0, Xn−1 = · · · = X1 = 1|X0 = 0)

= P(Xn = 0, Xn−1 = · · · = X2 = 1|X1 = 1, X0 = 0)P (X1 = 1|X0 = 0)

= P(Xn = 0, Xn−1 = · · · = X2 = 1|X1 = 1)P (X1 = 1|X0 = 0)

= . . .

= P(Xn = 0|Xn−1 = 1)P (Xn−1 = 1|Xn−2 = 1) · · ·P (X1 = 1|X0 = 0)

=

{
p1,0 · pn−21,1 · p0,1 (n > 1)

p0,0 (n = 1)

thus:

f
(n)
00 =

{
pq (1− q)n−2 (n > 1)

1− p (n = 1)

Then:

f00 =
∑
n≥1

f
(n)
00 = pq

1

1− (1− q)
+ (1− p) = 1

We thus find again that state 0 is recurrent.

f) We have:

µ0 = E (T0|X0 = 0) =
∑
n≥1

nP(T0 = n|X0 = 0) = f
(1)
00 +

∑
n≥2

nf
(n)
00

Notice the following power series relationship for x ∈ (−1, 1):∑
n≥0

xn =
1

1− x
=⇒ x

d

dx

∑
n≥0

xn = x
d

dx

1

1− x
=⇒

∑
n≥0

nxn =
x

(1− x)2

and rewrite the former expression as:

µ0 = E (T0|X0 = 0) = (1− p) + pq
∑
n≥2

(n− 2 + 2)(1− q)n−2

= (1− p) + pq
∑
n≥0

n(1− q)n + 2pq
∑
n≥0

(1− q)n

= 1− p+ pq
1− q
q2

+ 2pq
1

q

in conclusion:

µ0 = E (T0|X0 = 0) = 1 +
p

q

This is finite since q > 0, so state 0 is positive-recurrrent.
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g) Considering the two cases:

1. when p+q = 1, we have f
(n)
00 = q (1−q)n−1 for n ≥ 1, so T0 is a geometric random variable with

parameter q (conditioned on the fact that X0 = 0). Correspondingly, µ0 = E (T0|X0 = 0) = 1
q .

So if q is close to 0, then p is close to 1 and there is a higher chance to jump to state 1 and
lower chance to go back to state 0. We see that the mean µ0 is getting higher in such case.
Conversely, when q is close to 1, p is close to 0 and the process tends to stick to state 0.

2. when p = q we simply have µ0 = 2. Indeed: even if, for instance, p is close to 0 a very unlikely
jump to state 1 means to get stuck in 1 for a proportional ”higher” period - all in all, we get
a mean of 2 steps.

3. a) Let i be a recurrent state and j be another state in the same equivalence class. i and j

communicate, so there exist n1, n2 ≥ 1 such that p
(n1)
ji > 0 and p

(n2)
ij > 0. As i is recurrent, we

know that ∑
n≥1

p
(n)
ii = +∞

Besides, for every n ≥ 1, we have p
(n1+n+n2)
jj ≥ p(n1)

ji p
(n)
ii p

(n2)
ij , so because of the assumptions made:

∑
n≥1

p
(n1+n+n2)
jj ≥ p(n1)

ji

∑
n≥1

p
(n)
ii

 p
(n2)
ij = +∞

and we therefore also have
∑

n≥1 p
(n)
jj = +∞, i.e., j is recurrent.

b) We imitate the proof given in the lectures. Let Am = {Xm = j} and Bm = {Xm = j,Xr 6= j,
for 1 ≤ r < m}. The events Bm are disjoint, so

P(Am|X0 = i) =
m∑
r=1

P
(
Am

⋂
Br

X0 = i
)

=

m∑
r=1

P(Am|Br, X0 = i)P(Br|X0 = i) =

m∑
r=1

P(Am|Xr = j)P(Br|X0 = i)

where we have used the Markov condition in the last equality. Hence

p
(m)
ij =

m∑
r=1

p
(m−r)
jj f

(r)
ij

Multiplying by sm, |s| < 1 and summing over m, we find

Pij(s) = Pjj(s)Fij(s)

which is the desired result.
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c)

1. If j is recurrent, we have fjj = 1 by definition and we know from Pjj(s) = 1+Pjj(s)Fjj(s) that

Pjj(1) = +∞. Then Pij(1) = +∞ as long as Fij(1) > 0. This means that
∑

n≥0 p
(n)
ij = +∞

for i s.t. fij > 0 (use Abel’s theorem like in class to take lims↑1).

2. If j is transient, Pjj(1) < +∞ (because fjj < 1) and since Fij(1) ≤ 1, this means Pij(1) < +∞
which in turn means

∑
n≥0 p

(n)
ij < +∞.
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