Markov Chains and Algorithmic Applications - IC - EPFL

Solutions 2

1. a) The process Y is a Markov chain. Here is the proof:

$$
\begin{aligned}
& \mathbb{P}\left(Y_{n+1}=j \mid Y_{n}=i, Y_{n-1}=i_{n-1}, \ldots, Y_{1}=i_{1}, Y_{0}=0\right) \\
& =\mathbb{P}\left(S_{2 n+2}=j \mid S_{2 n}=i, S_{2 n-2}=i_{n-1}, \ldots, S_{2}=i_{1}, S_{0}=0\right) \\
& =\mathbb{P}\left(S_{2 n}+X_{2 n+1}+X_{2 n+2}=j \mid S_{2 n}=i, S_{2 n-2}=i_{n-1}, \ldots, S_{2}=i_{1}, S_{0}=0\right) \\
& =\mathbb{P}\left(X_{2 n+1}+X_{2 n+2}=j-i\right)
\end{aligned}
$$

and also

$$
\begin{aligned}
& \mathbb{P}\left(Y_{n+1}=j \mid Y_{n}=i\right)=\mathbb{P}\left(S_{2 n+2}=j \mid S_{2 n}=i\right)=\mathbb{P}\left(S_{2 n}+X_{2 n+1}+X_{2 n+2}=j \mid S_{2 n}=i\right) \\
& =\mathbb{P}\left(X_{2 n+1}+X_{2 n+2}=j-i\right)
\end{aligned}
$$

so the process Y is a Markov chain. Moreover,

$$
\mathbb{P}\left(X_{2 n+1}+X_{2 n+2}=j-i\right)= \begin{cases}1 / 4, & \text { if }|j-i|=2 \\ 1 / 2, & \text { if } i=j, \\ 0, & \text { otherwise }\end{cases}
$$

These probabilities do not depend on n, so the process Y is a time-homogeneous Markov chain.
b) The process Z is a Markov chain. Actually, for $n \geq 0$, we have $Z_{n+1}=(-1)^{S_{n}+X_{n+1}}=$ $(-1)^{S_{n}}(-1)^{X_{n+1}}=-Z_{n}$ always, as $(-1)^{X_{n+1}}=-1$, irrespective of the value of $X_{n+1} \in\{-1,+1\}$. The process Z is therefore deterministic, constantly alternating between the two states +1 and -1 , and

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

c) The process T is not a Markov chain. Here is why: on the one hand, we have (by counting the number of possible paths):

$$
\mathbb{P}\left(T_{4}=1 \mid T_{3}=1, T_{2}=1\right)=\frac{\mathbb{P}\left(T_{4}=1, T_{3}=1, T_{2}=1\right)}{\mathbb{P}\left(T_{3}=1, T_{2}=1\right)}=\frac{3 / 16}{2 / 8}=\frac{3}{4}
$$

On the other hand, we have:

$$
\mathbb{P}\left(T_{4}=1 \mid T_{3}=1, T_{2}=0\right)=\frac{\mathbb{P}\left(T_{4}=1, T_{3}=1, T_{2}=0\right)}{\mathbb{P}\left(T_{3}=1, T_{2}=0\right)}=\frac{1 / 16}{1 / 8}=\frac{1}{2} \neq \frac{3}{4}
$$

so the process T is not a Markov chain.
d) The process W is exactly the same as the process Y, so it is a Markov chain.
2. a) Transition matrix:

$$
P=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right)
$$

Transition graph:

b) $\quad X_{n+1}$ is independent of X_{n} if and only if for all $(i, j) \in \mathcal{S}^{2}$, it holds that $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=\right.$ i) $=\mathbb{P}\left(X_{n+1}=j\right)$. Therefore, we have the necessary condition $\mathbb{P}\left(X_{n+1}=1 \mid X_{n}=1\right)=\mathbb{P}\left(X_{n+1}=\right.$ $1 \mid X_{n}=0$), that is: $1-q=p$, and thus $p+q=1$.

Conversely, the transition matrix $P=\left(\begin{array}{ll}1-p & p \\ 1-p & p\end{array}\right)$ satisfies the aforementioned independence condition. Note that the time-homogeneity condition of the Markov chain extends the independence.
c) $\quad P$ has the characteristic polynomial $\chi_{P}(X)=((1-p)-X)((1-q)-X)-p q$, that is:

$$
\chi_{P}(X)=X^{2}-(2-p-q) X+1-p-q
$$

whose discriminant is positive since $p, q>0$ and:

$$
\Delta=(1+1-p-q)^{2}-4(1-p-q)=(p+q)^{2}
$$

Thus there are two distinct eigenvalues: $\{1,1-p-q\}$, with respective eigenvectors $\binom{1}{1}$ and $\binom{p}{-q}$. Writing $D=\left(\begin{array}{cc}1 & 0 \\ 0 & 1-p-q\end{array}\right)$ and $U=\left(\begin{array}{cc}1 & p \\ 1 & -q\end{array}\right)$ we have:

$$
P=U D U^{-1}
$$

where:

$$
U^{-1}=\frac{1}{p+q}\left(\begin{array}{cc}
q & p \\
1 & -1
\end{array}\right)
$$

Thus for $n \in \mathbb{N}$:

$$
p_{0,0}^{(n)}=\left[P^{n}\right]_{0,0}=\left[U D^{n} U^{-1}\right]_{0,0}=\frac{q+p(1-p-q)^{n}}{p+q}
$$

d) We have for $N \in \mathbb{N}^{*}$:

$$
\sum_{n=1}^{N} p_{00}^{(n)}=\frac{1}{p+q}\left(q N+p(1-p-q) \frac{1-(1-p-q)^{N-1}}{p+q}\right)
$$

Because $0<p<1,0<q<1$, we have $|1-p-q|<1$ and thus the second term converges when $N \rightarrow \infty$. As for the first term, it converges only when $q=0$, which is not the case by assumption. Therefore:

$$
\sum_{n \geq 1} p_{00}^{(n)}=+\infty
$$

and we conclude that state 0 is recurrent.
e) We have:

$$
\begin{aligned}
f_{00}^{(n)} & =\mathbb{P}\left(X_{n}=0, X_{n-1}=\cdots=X_{1}=1 \mid X_{0}=0\right) \\
& =\mathbb{P}\left(X_{n}=0, X_{n-1}=\cdots=X_{2}=1 \mid X_{1}=1, X_{0}=0\right) P\left(X_{1}=1 \mid X_{0}=0\right) \\
& =\mathbb{P}\left(X_{n}=0, X_{n-1}=\cdots=X_{2}=1 \mid X_{1}=1\right) P\left(X_{1}=1 \mid X_{0}=0\right) \\
& =\cdots \\
& =\mathbb{P}\left(X_{n}=0 \mid X_{n-1}=1\right) P\left(X_{n-1}=1 \mid X_{n-2}=1\right) \cdots P\left(X_{1}=1 \mid X_{0}=0\right) \\
& = \begin{cases}p_{1,0} \cdot p_{1,1}^{n-2} \cdot p_{0,1} & (n>1) \\
p_{0,0} & (n=1)\end{cases}
\end{aligned}
$$

thus:

$$
f_{00}^{(n)}= \begin{cases}p q(1-q)^{n-2} & (n>1) \\ 1-p & (n=1)\end{cases}
$$

Then:

$$
f_{00}=\sum_{n \geq 1} f_{00}^{(n)}=p q \frac{1}{1-(1-q)}+(1-p)=1
$$

We thus find again that state 0 is recurrent.
f) We have:

$$
\mu_{0}=\mathbb{E}\left(T_{0} \mid X_{0}=0\right)=\sum_{n \geq 1} n \mathbb{P}\left(T_{0}=n \mid X_{0}=0\right)=f_{00}^{(1)}+\sum_{n \geq 2} n f_{00}^{(n)}
$$

Notice the following power series relationship for $x \in(-1,1)$:

$$
\sum_{n \geq 0} x^{n}=\frac{1}{1-x} \Longrightarrow x \frac{\mathrm{~d}}{\mathrm{~d} x} \sum_{n \geq 0} x^{n}=x \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{1}{1-x} \Longrightarrow \sum_{n \geq 0} n x^{n}=\frac{x}{(1-x)^{2}}
$$

and rewrite the former expression as:

$$
\begin{aligned}
\mu_{0}=\mathbb{E}\left(T_{0} \mid X_{0}=0\right) & =(1-p)+p q \sum_{n \geq 2}(n-2+2)(1-q)^{n-2} \\
& =(1-p)+p q \sum_{n \geq 0} n(1-q)^{n}+2 p q \sum_{n \geq 0}(1-q)^{n} \\
& =1-p+p q \frac{1-q}{q^{2}}+2 p q \frac{1}{q}
\end{aligned}
$$

in conclusion:

$$
\mu_{0}=\mathbb{E}\left(T_{0} \mid X_{0}=0\right)=1+\frac{p}{q}
$$

This is finite since $q>0$, so state 0 is positive-recurrrent.
g) Considering the two cases:

1. when $p+q=1$, we have $f_{00}^{(n)}=q(1-q)^{n-1}$ for $n \geq 1$, so T_{0} is a geometric random variable with parameter q (conditioned on the fact that $X_{0}=0$). Correspondingly, $\mu_{0}=\mathbb{E}\left(T_{0} \mid X_{0}=0\right)=\frac{1}{q}$. So if q is close to 0 , then p is close to 1 and there is a higher chance to jump to state 1 and lower chance to go back to state 0 . We see that the mean μ_{0} is getting higher in such case. Conversely, when q is close to $1, p$ is close to 0 and the process tends to stick to state 0 .
2. when $p=q$ we simply have $\mu_{0}=2$. Indeed: even if, for instance, p is close to 0 a very unlikely jump to state 1 means to get stuck in 1 for a proportional "higher" period - all in all, we get a mean of 2 steps.
3. a) Let i be a recurrent state and j be another state in the same equivalence class. i and j communicate, so there exist $n_{1}, n_{2} \geq 1$ such that $p_{j i}^{\left(n_{1}\right)}>0$ and $p_{i j}^{\left(n_{2}\right)}>0$. As i is recurrent, we know that

$$
\sum_{n \geq 1} p_{i i}^{(n)}=+\infty
$$

Besides, for every $n \geq 1$, we have $p_{j j}^{\left(n_{1}+n+n_{2}\right)} \geq p_{j i}^{\left(n_{1}\right)} p_{i i}^{(n)} p_{i j}^{\left(n_{2}\right)}$, so because of the assumptions made:

$$
\sum_{n \geq 1} p_{j j}^{\left(n_{1}+n+n_{2}\right)} \geq p_{j i}^{\left(n_{1}\right)}\left(\sum_{n \geq 1} p_{i i}^{(n)}\right) p_{i j}^{\left(n_{2}\right)}=+\infty
$$

and we therefore also have $\sum_{n \geq 1} p_{j j}^{(n)}=+\infty$, i.e., j is recurrent.
b) We imitate the proof given in the lectures. Let $A_{m}=\left\{X_{m}=j\right\}$ and $B_{m}=\left\{X_{m}=j, X_{r} \neq j\right.$, for $1 \leq r<m\}$. The events B_{m} are disjoint, so

$$
\begin{aligned}
\mathbb{P}\left(A_{m} \mid X_{0}=i\right) & =\sum_{r=1}^{m} \mathbb{P}\left(A_{m} \bigcap B_{r} \mid X_{0}=i\right) \\
& =\sum_{r=1}^{m} \mathbb{P}\left(A_{m} \mid B_{r}, X_{0}=i\right) \mathbb{P}\left(B_{r} \mid X_{0}=i\right)=\sum_{r=1}^{m} \mathbb{P}\left(A_{m} \mid X_{r}=j\right) \mathbb{P}\left(B_{r} \mid X_{0}=i\right)
\end{aligned}
$$

where we have used the Markov condition in the last equality. Hence

$$
p_{i j}^{(m)}=\sum_{r=1}^{m} p_{j j}^{(m-r)} f_{i j}^{(r)}
$$

Multiplying by $s^{m},|s|<1$ and summing over m, we find

$$
P_{i j}(s)=P_{j j}(s) F_{i j}(s)
$$

which is the desired result.
c)

1. If j is recurrent, we have $f_{j j}=1$ by definition and we know from $P_{j j}(s)=1+P_{j j}(s) F_{j j}(s)$ that $P_{j j}(1)=+\infty$. Then $P_{i j}(1)=+\infty$ as long as $F_{i j}(1)>0$. This means that $\sum_{n>0} p_{i j}^{(n)}=+\infty$ for i s.t. $f_{i j}>0$ (use Abel's theorem like in class to take $\lim _{s \uparrow 1}$).
2. If j is transient, $P_{j j}(1)<+\infty$ (because $f_{j j}<1$) and since $F_{i j}(1) \leq 1$, this means $P_{i j}(1)<+\infty$ which in turn means $\sum_{n \geq 0} p_{i j}^{(n)}<+\infty$.
