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1. a) Let us write by convention that y ∼ x if there exists a unique j ∈ 1, . . . , d such that yj 6= xj .
Observing that the described process is a random walk on the graph described by the relation ∼,
we deduce that the transition matrix of the chain is given by

pxy =

{
1

(m−1)d if y ∼ x
0 otherwise

The chain is clearly irreducible, aperiodic and positive-recurrent, therefore ergodic. Its stationary
distribution π is uniform (i.e. πx = m−d ∀x ∈ S), and the detailed balance equation is satisfied.

b) Assume that |z| = k and denote by A the set of indices j ∈ {1, . . . , d} such that zj 6= 0 (so that
|A| = k). Then(

Pφ(z)
)
x

=
∑
y∈S

pxy φ
(z)
y =

1

(m− 1)d

∑
y∼x

exp (2πiy · z/m)

=
1

(m− 1)d

d∑
j=1

m−1∑
t=0 : t6=xj

exp

2πi

 d∑
l=1 : l 6=j

xlzl + tzj

 /m


=

1

(m− 1)d

d∑
j=1

exp

2πi

 d∑
l=1 : l 6=j

xlzl

 /m

× m−1∑
u=0 :u6=xj

exp(2πiuzj/m)

Observe now that if zj = 0, then

m−1∑
u=0 :u6=xj

exp(2πiuzj/m) =

m−1∑
u=0 :u6=xj

1 = m− 1 = (m− 1) exp(2πixjzj/m)

while if zj 6= 0, then

m−1∑
u=0 :u6=xj

exp(2πiuzj/m) =
m−1∑
u=0

exp(2πiuzj/m)− exp(2πixjzj/m) = 0− exp(2πixjzj/m)

This finally gives

(
Pφ(z)

)
x

=
1

(m− 1)d

∑
j∈A

(−1) exp (2πix · z/m) +
∑
j∈Ac

(m− 1) exp (2πix · z/m)


=

1

(m− 1)d
(−d exp (2πix · z/m) + (d− k)m exp (2πix · z/m)) =

(d− k)m− d
(m− 1)d

φ(z)x

=

(
1− km

(m− 1)d

)
φ(z)x

The eigenvalue λz corresponding to φ(z) is therefore given by

λz = 1− |z|m
(m− 1)d
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c) The second largest eigenvalue is equal to 1 − m
(m−1)d , while the least eigenvalue is equal to

1 − m
m−1 = − 1

m−1 . When d > 2 (remember also that by assumption, m > 2), the spectral gap is
therefore determined by the second largest eigenvalue and equal to γ = m

(m−1)d . This leads to the
following upper bound on the total variation distance:

‖Pn
0 − π‖TV ≤

1

2
√
π0

exp(−γn) =
md/2

2
exp

(
− nm

(m− 1)d

)
,

which becomes small only when n ≥ c d2 logm for some constant c > 0.

d) The lower bound obtained in class applies here, as |φ(z)x |2 = 1 for all z and x. It reads

‖Pn
0 − π‖TV ≥

1

2
λn∗ '

1

2
exp(−γn) =

1

2
exp

(
− nm

(m− 1)d

)
which is small for n ≥ cd already, so the two bounds do not match.

e*) A tighter upper bound on the total variation distance can be found via the following analysis:

‖Pn
0 − π‖TV ≤

1

2

√ ∑
z∈S\{0}

λ2nz =
1

2

√√√√ d∑
t=1

∑
z∈S : |z|=t

(
1− tm

(m− 1)d

)2n

As∑
z∈S : |z|=t

=

(
d

t

)
(m−1)t ≤ ((m− 1)d)t

t!
and

(
1− tm

(m− 1)d

)2n

≤ exp

(
− 2tmn

(m− 1)d

)
≤ exp

(
−2tn

d

)

we finally obtain

‖Pn
0 − π‖TV ≤

1

2

√√√√ d∑
t=1

1

t!
exp

(
−t
(

2n

d
− log((m− 1)d)

))

Taking now n = d
2 (log((m− 1)d) + c), we obtain

‖Pn
0 − π‖TV ≤

1

2

√√√√ ∞∑
t=1

1

t!
exp(−tc) =

1

2

√
exp (e−c)− 1

which can be made arbirarily small by taking c large. So finally, the upper bound on the mixing
time is O(d max(logm, log d)).
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2. Following what has been done in class, we obtain first

‖Pn
0 − π‖2 =

∑
y∈S

(
p0y(n)
√
πy
−√πy

)2
1/2

=

 ∑
z∈S : z 6=0

λ2nz (φ
(z)
0 )2

1/2

≥

bd/2c∑
k=1

(
d

k

) (
1− 2k

d+ 1

)2n
1/2

≥
√
d

(
1− 2

d+ 1

)n

by retaining only the term k = 1 in the above sum. Using now the fact that e−x ' 1 − x for x
small, we obtain further

‖Pn
0 − π‖2 ≥ exp

(
1

2
log d− 2n

d+ 1

)
= exp(c/2)

for n = d+1
4 (log d − c). The above expression can therefore be made arbitrarily large by taking

c > 0 arbitrarily large.
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