Markov Chains and Algorithmic Applications - IC - EPFL

Solutions 7

1. a) Let us write by convention that $y \sim x$ if there exists a unique $j \in 1, \ldots, d$ such that $y_{j} \neq x_{j}$. Observing that the described process is a random walk on the graph described by the relation \sim, we deduce that the transition matrix of the chain is given by

$$
p_{x y}= \begin{cases}\frac{1}{(m-1) d} & \text { if } y \sim x \\ 0 & \text { otherwise }\end{cases}
$$

The chain is clearly irreducible, aperiodic and positive-recurrent, therefore ergodic. Its stationary distribution π is uniform (i.e. $\pi_{x}=m^{-d} \forall x \in S$), and the detailed balance equation is satisfied.
b) Assume that $|z|=k$ and denote by A the set of indices $j \in\{1, \ldots, d\}$ such that $z_{j} \neq 0$ (so that $|A|=k)$. Then

$$
\begin{aligned}
\left(P \phi^{(z)}\right)_{x} & =\sum_{y \in S} p_{x y} \phi_{y}^{(z)}=\frac{1}{(m-1) d} \sum_{y \sim x} \exp (2 \pi i y \cdot z / m) \\
& =\frac{1}{(m-1) d} \sum_{j=1}^{d} \sum_{t=0: t \neq x_{j}}^{m-1} \exp \left(2 \pi i\left(\sum_{l=1: l \neq j}^{d} x_{l} z_{l}+t z_{j}\right) / m\right) \\
& =\frac{1}{(m-1) d} \sum_{j=1}^{d} \exp \left(2 \pi i\left(\sum_{l=1: l \neq j}^{d} x_{l} z_{l}\right) / m\right) \times \sum_{u=0: u \neq x_{j}}^{m-1} \exp \left(2 \pi i u z_{j} / m\right)
\end{aligned}
$$

Observe now that if $z_{j}=0$, then

$$
\sum_{u=0: u \neq x_{j}}^{m-1} \exp \left(2 \pi i u z_{j} / m\right)=\sum_{u=0: u \neq x_{j}}^{m-1} 1=m-1=(m-1) \exp \left(2 \pi i x_{j} z_{j} / m\right)
$$

while if $z_{j} \neq 0$, then

$$
\sum_{u=0: u \neq x_{j}}^{m-1} \exp \left(2 \pi i u z_{j} / m\right)=\sum_{u=0}^{m-1} \exp \left(2 \pi i u z_{j} / m\right)-\exp \left(2 \pi i x_{j} z_{j} / m\right)=0-\exp \left(2 \pi i x_{j} z_{j} / m\right)
$$

This finally gives

$$
\begin{aligned}
\left(P \phi^{(z)}\right)_{x} & =\frac{1}{(m-1) d}\left(\sum_{j \in A}(-1) \exp (2 \pi i x \cdot z / m)+\sum_{j \in A^{c}}(m-1) \exp (2 \pi i x \cdot z / m)\right) \\
& =\frac{1}{(m-1) d}(-d \exp (2 \pi i x \cdot z / m)+(d-k) m \exp (2 \pi i x \cdot z / m))=\frac{(d-k) m-d}{(m-1) d} \phi_{x}^{(z)} \\
& =\left(1-\frac{k m}{(m-1) d}\right) \phi_{x}^{(z)}
\end{aligned}
$$

The eigenvalue λ_{z} corresponding to $\phi^{(z)}$ is therefore given by

$$
\lambda_{z}=1-\frac{|z| m}{(m-1) d}
$$

c) The second largest eigenvalue is equal to $1-\frac{m}{(m-1) d}$, while the least eigenvalue is equal to $1-\frac{m}{m-1}=-\frac{1}{m-1}$. When $d>2$ (remember also that by assumption, $m>2$), the spectral gap is therefore determined by the second largest eigenvalue and equal to $\gamma=\frac{m}{(m-1) d}$. This leads to the following upper bound on the total variation distance:

$$
\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{1}{2 \sqrt{\pi_{0}}} \exp (-\gamma n)=\frac{m^{d / 2}}{2} \exp \left(-\frac{n m}{(m-1) d}\right)
$$

which becomes small only when $n \geq c d^{2} \log m$ for some constant $c>0$.
d) The lower bound obtained in class applies here, as $\left|\phi_{x}^{(z)}\right|^{2}=1$ for all z and x. It reads

$$
\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}} \geq \frac{1}{2} \lambda_{*}^{n} \simeq \frac{1}{2} \exp (-\gamma n)=\frac{1}{2} \exp \left(-\frac{n m}{(m-1) d}\right)
$$

which is small for $n \geq c d$ already, so the two bounds do not match.
$\left.\mathbf{e}^{*}\right)$ A tighter upper bound on the total variation distance can be found via the following analysis:

$$
\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{1}{2} \sqrt{\sum_{z \in S \backslash\{0\}} \lambda_{z}^{2 n}}=\frac{1}{2} \sqrt{\sum_{t=1}^{d} \sum_{z \in S:|z|=t}\left(1-\frac{t m}{(m-1) d}\right)^{2 n}}
$$

As
$\sum_{z \in S:|z|=t}=\binom{d}{t}(m-1)^{t} \leq \frac{((m-1) d)^{t}}{t!}$ and $\left(1-\frac{t m}{(m-1) d}\right)^{2 n} \leq \exp \left(-\frac{2 t m n}{(m-1) d}\right) \leq \exp \left(-\frac{2 t n}{d}\right)$
we finally obtain

$$
\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{1}{2} \sqrt{\sum_{t=1}^{d} \frac{1}{t!} \exp \left(-t\left(\frac{2 n}{d}-\log ((m-1) d)\right)\right)}
$$

Taking now $n=\frac{d}{2}(\log ((m-1) d)+c)$, we obtain

$$
\left\|P_{0}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{1}{2} \sqrt{\sum_{t=1}^{\infty} \frac{1}{t!} \exp (-t c)}=\frac{1}{2} \sqrt{\exp \left(e^{-c}\right)-1}
$$

which can be made arbirarily small by taking c large. So finally, the upper bound on the mixing time is $O(d \max (\log m, \log d))$.
2. Following what has been done in class, we obtain first

$$
\begin{aligned}
\left\|P_{0}^{n}-\pi\right\|_{2} & =\left(\sum_{y \in S}\left(\frac{p_{0 y}(n)}{\sqrt{\pi_{y}}}-\sqrt{\pi_{y}}\right)^{2}\right)^{1 / 2}=\left(\sum_{z \in S: z \neq 0} \lambda_{z}^{2 n}\left(\phi_{0}^{(z)}\right)^{2}\right)^{1 / 2} \\
& \geq\left(\sum_{k=1}^{\lfloor d / 2\rfloor}\binom{d}{k}\left(1-\frac{2 k}{d+1}\right)^{2 n}\right)^{1 / 2} \geq \sqrt{d}\left(1-\frac{2}{d+1}\right)^{n}
\end{aligned}
$$

by retaining only the term $k=1$ in the above sum. Using now the fact that $e^{-x} \simeq 1-x$ for x small, we obtain further

$$
\left\|P_{0}^{n}-\pi\right\|_{2} \geq \exp \left(\frac{1}{2} \log d-\frac{2 n}{d+1}\right)=\exp (c / 2)
$$

for $n=\frac{d+1}{4}(\log d-c)$. The above expression can therefore be made arbitrarily large by taking $c>0$ arbitrarily large.

