
Markov Chains and Algorithmic Applications: WEEK 6

1 Rate of convergence: proofs

1.1 Reminder

Let (Xn, n ≥ 0) be a Markov chain with state space S and transition matrix P , and consider the following
assumptions:

• X is ergodic (irreducible, aperiodic and positive-recurrent), so there exists a stationary distribution
π and it is a limiting distribution as well.

• The state space S is finite, |S| = N .

• Detailed balance holds (πipij = πjpji ∀i, j ∈ S).

Statement 1.1. Under these assumptions, we have seen that there exist numbers λ0 ≥ λ1 ≥ . . . ≥ λN−1
and vectors φ(0), φ(1), . . . , φ(N−1) ∈ RN such that

Pφ(k) = λkφ
(k), k = 0, . . . , N − 1

and φ
(k)
j =

u
(k)
j√
πj

, where u(0), . . . , u(N−1) is an orthonormal basis of RN (u(k) are the eigenvectors of the

symmetric matrix Q, where qij =
√
πi pij

1√
πj

). Note that the φ(k) do not usually form an orthonormal

basis of RN .

Facts

1. φ
(0)
j = 1 ∀j ∈ S, λ0 = 1 and |λk| ≤ 1 ∀k ∈ {0, . . . , N − 1}

2. λ1 < +1 and λN−1 > −1

Definition 1.2. Let us define λ∗ = max
k∈{1,...,N−1}

|λk| = max{λ1,−λN−1}. The spectral gap is defined as

γ = 1− λ∗.
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Figure 1: Spectral gap

Theorem 1.3. Under all the assumptions made above, we have

‖Pni − π‖TV =
1

2

∑
j∈S
|pij(n)− πj | ≤

1

2
√
πi
λn∗ ≤

1

2
√
πi
e−γn, ∀i ∈ S, n ≥ 1
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1.2 Proof of Fact 1

Let us first prove that φ
(0)
j = 1 ∀j ∈ S and λ0 = 1.

Consider φ
(0)
j = 1 ∀j ∈ S; we will prove that (Pφ(0))i = φ

(0)
i (so λ0 = 1):

(Pφ(0))i =
∑
j∈S

pij φ
(0)
j︸︷︷︸
=1

=
∑
j∈S

pij = 1 = φ
(0)
i

Also, we know that φ
(0)
i =

u
(0)
i√
πi

, so u
(0)
i =

√
πi φ

(0)
i =

√
πi. The norm of u(0) is therefore equal to 1:

‖u(0)‖2 =
∑
i∈S

(u
(0)
i )2 =

∑
i∈S

πi = 1

Let us then prove that |λk| ≤ 1 ∀k ∈ {0, . . . , N − 1}.

Let φ(k) be the eigenvector corresponding to λk. We define i to be such that |φ(k)i | ≥ |φ
(k)
j | ∀j ∈ S

(|φ(0)i | > 0 because an eigenvector cannot be all-zero). We will use Pφ(k) = λkφ
(k) in the following:

|λkφ(k)i | =
∣∣∣(Pφ(k))i∣∣∣ =

∣∣∣∣∣∣
∑
j∈S

pijφ
(k)
j

∣∣∣∣∣∣ ≤
∑
j∈S

pij |φ(k)j |︸ ︷︷ ︸
≤|φ(k)

i |,∀j∈S

≤ |φ(k)i |
∑
j∈S

pij︸ ︷︷ ︸
=1

So we have |λk||φ(k)i | ≤ |φ
(k)
i |, which implies that |λk| ≤ 1, as |φ(k)i | > 0. �

1.3 Proof of Fact 2

We want to prove that λ1 < +1 and λN−1 > −1, which together imply that λ∗ < 1.
By the assumptions made, we know that the chain is irreducible, aperiodic and finite, so ∃n0 > 1 such
that pij(n) > 0, ∀i, j ∈ S, ∀n ≥ n0.

λ1 < +1 :

Assume φ is such that Pφ = φ: we will prove that φ can only be a multiple of φ(0), which implies that
the eigenvalue λ = 1 has a unique eigenvector associated to it, so λ1 < 1. Take i such that |φi| ≥ |φj |,
∀j ∈ S, and let n ≥ n0.

φi = (Pφ)i = (Pnφ)i
(∗)
=
∑
j∈S

pij(n)φj

so

|φi| =

∣∣∣∣∣∣
∑
j∈S

pij(n)φj

∣∣∣∣∣∣ ≤
∑
j∈S

pij(n) |φj |︸︷︷︸
≤|φi|

≤ |φi|
∑
j∈S

pij(n)︸ ︷︷ ︸
1

= |φi|

So we have |φi| ≤
∑
j∈S pij(n)|φj | ≤ |φi|. To have equality, we clearly need to have |φi| = |φj |, ∀j ∈ S

(because pij(n) > 0 for all i, j and
∑
j∈S pij(n) = 1 for all i ∈ S). Because (∗) is satisfied, we also have

φi =
∑
j∈S pij(n)φj , which in turn implies that φj = φi for all j ∈ S. So the vector φ is constant. �
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λN−1 > −1 :

Assume there exists φ 6= 0 such that Pφ = −φ: we will prove that this is impossible, showing therefore
that no eigenvalue can take the value −1. Take i such that |φi| ≥ |φj |, ∀j ∈ S and let n odd be such that
n ≥ n0.

Now, as Pnφ = Pφ = −φ, we have −φi
(∗)
=
∑
j∈S pij(n)φj and |φi| ≤

∑
j∈S pij(n) |φj | ≤ |φi|. So, as

above, we need to have |φj | = |φi|, for all j ∈ S and then, thanks to (∗), φj = −φi, for all j ∈ S. This
implies that φi = −φi = 0, and leads to φj = 0 for all j ∈ S, which is impossible. �

1.4 Proof of the theorem

We will first use the Cauchy-Schwarz inequality which states that∣∣∣∣∣∣
∑
j∈S

ajbj

∣∣∣∣∣∣ ≤
∑
j∈S

a2j

1/2∑
j∈S

b2j

1/2

so as to obtain

‖Pni − π‖TV =
1

2

∑
j∈S

∣∣∣∣pij(n)− πj√
πj

∣∣∣∣︸ ︷︷ ︸
aj

√
πj︸︷︷︸
bj

≤ 1

2

∑
j∈S

(
pij(n)
√
πj
−√πj

)2
1/2∑

j∈S
πj

1/2

︸ ︷︷ ︸
1

=
1

2

∑
j∈S

(
pij(n)
√
πj
−√πj

)2
1/2

Lemma 1.4.

pij(n)
√
πj
−√πj =

√
πj

N−1∑
k=1

λnkφ
(k)
i φ

(k)
j

Proof. Remember that u(0), . . . , u(N−1) is an orthonormal basis of RN , so we can write for any v ∈ RN

v =
∑N−1
k=0 (vTu(k))u(k) i.e. vj =

∑N−1
k=0 (vTu(k))u

(k)
j . For a fixed i ∈ S, take vj =

pij(n)√
πj

. We obtain

(vTu(k)) =
∑
j∈S

pij(n)
√
πj

u
(k)
j =

∑
j∈S

pij(n)φ
(k)
j = (Pnφ(k))i = λnkφ

(k)
i

which in turn implies

vj =
pij(n)
√
πj

=

N−1∑
k=0

λnkφ
(k)
i u

(k)
j =

N−1∑
k=0

λnkφ
(k)
i φ

(k)
j

√
πj = λn0φ

(0)
i φ

(0)
j︸ ︷︷ ︸

1

√
πj +

√
πj

N−1∑
k=1

λnkφ
(k)
i φ

(k)
j
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Let us continue with the proof of the theorem using this lemma.

‖Pni − π‖TV ≤ 1

2

∑
j∈S

(
pij(n)
√
πj
−√πj

)2
1/2

=
1

2

∑
j∈S

(
√
πj

N−1∑
k=1

λnkφ
(k)
i φ

(k)
j

)2
1/2

=
1

2

∑
j∈S

πj

N−1∑
k,l=1

λnkφ
(k)
i φ

(k)
j λnl φ

(l)
i φ

(l)
j

1/2

=
1

2

N−1∑
k,l=1

λnkφ
(k)
i λnl φ

(l)
i

∑
j∈S

πjφ
(k)
j φ

(l)
j

1/2

=
1

2

(
N−1∑
k=1

λ2nk (φ
(k)
i )2

)1/2

where we have used the fact that
∑
j∈S πjφ

(k)
j φ

(l)
j =

∑
j∈S u

(k)
j u

(l)
j = (u(k))Tu(l) = δkl. Remembering

now that |λk| ≤ λ∗ for every 1 ≤ k ≤ N − 1, we obtain

‖Pni − π‖TV ≤
1

2
λn∗

(
N−1∑
k=1

(φ
(k)
i )2

)1/2

In order to compute the term in parentheses, remember again that vj =
∑N−1
k=0 (vTu(k))u

(k)
j for every

v ∈ RN , so by choosing v = ei, i.e., vj = δij =

{
1 if i = j
0 otherwise

, we obtain:

vTu(k) = u
(k)
i and δij =

N−1∑
k=0

u
(k)
i u

(k)
j

For i = j, we get δii = 1 =
∑N−1
k=0 (u

(k)
i )2 =

∑N−1
k=0 πi (φ

(k)
i )2, so

N−1∑
k=1

(φ
(k)
i )2 =

N−1∑
k=0

(φ
(k)
i )2 − (φ

(0)
i )2︸ ︷︷ ︸
1

=
1

πi
− 1 ≤ 1

πi

which finally leads to the inequality

‖Pni − π‖TV ≤
λn∗

2
√
πi

and therefore completes the proof. �

1.5 Lazy random walks

Adding self-loops to a Markov chain makes it a priori “lazy”. Surprisingly perhaps, this might in some
cases speed up the convergence to equilibrium!

Adding self-loops of weight α ∈ (0, 1) to every state has the following impact on the transition matrix:

assuming P is the transition matrix of the initial Markov chain, the new transition matrix P̃ becomes

P̃ = α I + (1− α)P

As a consequence:

• The eigenvalues also change from λk to λ̃k = α+ (1− α)λk, which sometimes reduces the value of
λ∗ = max1≤k≤N−1 |λk|. The spectral gap being equal to γ = 1 − λ∗, we obtain that by reducing
λ∗, we might increase the spectral gap as well as the convergence rate to equilibrium.
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• Note that λ0 stays the same: λ̃0 = α+ (1− α)λ0 = 1, as well as the stationary distribution π:

πP̃ = π (αI + (1− α)P ) = απ + (1− α) πP︸︷︷︸
=π

= π

Example 1.5. Random walk on the circle with N = 3:

P =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 add α−−−−→ P̃ =

 α 1−α
2

1−α
2

1−α
2 α 1−α

2
1−α
2

1−α
2 α



α

0 1

2

(1 – α)/2

α

α

(1 – α)/2

(1
 –

 α
)/2

(1 – α)/2
(1

 –
 α

)/2

(1 – α)/2
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