Markov Chains and Algorithmic Applications: WEEK 6

1 Rate of convergence: proofs

1.1 Reminder

Let (X,,, n > 0) be a Markov chain with state space S and transition matrix P, and consider the following
assumptions:

e X is ergodic (irreducible, aperiodic and positive-recurrent), so there exists a stationary distribution
m and it is a limiting distribution as well.

e The state space S is finite, |S| = N.
e Detailed balance holds (mp;; = m;p;i Vi, j € 5).

Statement 1.1. Under these assumptions, we have seen that there exist numbers A\g > Ay > ... > An_1
and vectors ¢, ¢ ... p(N=1) € RN such that

Pe®) = x\o®) k=0,...,N—1

0]

and ¢§.k) = qf/’?, where u(©, ... w®™~1 is an orthonormal basis of RN (u(k) are the eigenvectors of the
J

symmetric matrix @), where g;; = \/7; psj \/%) Note that the ¢*) do not usually form an orthonormal
J

basis of R,

Facts
L ¢ =1 vjeS, =1 and |N|<1 Vke{0,...,N—1}

2. M1 <+1land Ay_1 > —1

Definition 1.2. Let us define A\, = el max , [Ak| = max{A\1, —An_1}. The spectral gap is defined as
e{1,..,N—-1
vy=1-= ).

\

Figure 1: Spectral gap

Theorem 1.3. Under all the assumptions made above, we have
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1P =y = = > Ipij(n) — mj| < AL < e, VieS n>1
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1.2 Proof of Fact 1
Let us first prove that gi)g.o) =1 VjeSand \g=1.
Consider d);_o) =1 VjeS; we will prove that (P¢(®); = (/)20) (so Ap=1):

(Po); me ¢><0) > opi=1=0{"

JjES jES

SO u \/ﬁqﬁ(o /7. The norm of 19 is therefore equal to 1:

@ =D (@) =D m =1

i€S €S

Also, we know that qb \ﬁ,
Let us then prove that |A\g| <1 Vke{0,...,N —1}.

Let ¢®) be the eigenvector corresponding to A,. We define i to be such that \¢§k)| > |¢;k)\ Vj e S

(|¢EO)| > 0 because an eigenvector cannot be all-zero). We will use Po®) = \.¢™*) in the following:

k k k
Mo = [(Po®)i] = S pol®| <> my 10 <161 wy
jes jes —~ jes
<loM|vjes —
=1
R)) (0] e n e (k)
So we have |Ag||¢;"’| < |¢,; |, which implies that |\x| <1, as |¢; | > 0. O

1.3 Proof of Fact 2

We want to prove that \; < 4+1 and Ay_; > —1, which together imply that A, < 1.
By the assumptions made, we know that the chain is irreducible, aperiodic and finite, so Ing > 1 such
that p;j(n) >0, Vi,j € S,Vn > ny.

A < +1:

Assume ¢ is such that P¢ = ¢: we will prove that ¢ can only be a multiple of ¢(©), which implies that
the eigenvalue A = 1 has a unique eigenvector associated to it, so Ay < 1. Take i such that |¢;| > |¢;],
Vj € S, and let n > ng.
61 = (P9): = (P"0): 2 S pis(m) 0,
JES
SO

|¢z| = Zpu (b] < pr |¢]| < |¢z|zpz] |¢z‘

jeSs JES <|¢1| jeES
1
So we have [¢;| < 37 cgpij(n)|d;] < |¢;]. To have equality, we clearly need to have |¢;| = |¢;], Vj € S

(because p;j(n) > 0 for all i, j and > g pij(n) = 1 for all i € S). Because (x) is satisfied, we also have
¢; = Zjespij(n)¢jv which in turn implies that ¢; = ¢; for all j € S. So the vector ¢ is constant. O



AN-1 > —1:

Assume there exists ¢ # 0 such that P¢ = —¢: we will prove that this is impossible, showing therefore
that no eigenvalue can take the value —1. Take ¢ such that |¢;| > |¢;], ¥j € S and let n odd be such that
n 2 Nng.

Now, as P"¢ = P = —¢, we have —¢; = >, opij(n) ¢; and |¢i| < 3,5 pij(n) |¢] < |¢i]. So, as
above, we need to have |¢;| = |¢;], for all j € S and then, thanks to (%), ¢; = —¢;, for all j € S. This
implies that ¢; = —¢; = 0, and leads to ¢; = 0 for all j € S, which is impossible. |

1.4 Proof of the theorem

We will first use the Cauchy-Schwarz inequality which states that
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Lemma 1.4.
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Proof. Remember that v(?), ... «¥ =1 is an orthonormal basis of RY, so we can write for any v € RY
v= Zivz_ol(v uF)u®) ie. v; = Zsz_Ol (vTu(k))ugk). For a fixed i € S, take v; = Pz}(j) We obtain

o uth) pr uf) = pi(n)ey” = (ProM); = Apgf”

jes jes
which in turn implies
i (n) N-1
vj = DPij = = )\ZQb u Z )\n(b(k)(b(k)\/* )\n(b(o)qf)(o \/7"" \/7 Z A (Zs(k ((j)(k
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Let us continue with the proof of the theorem using this lemma.
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where we have used the fact that . ¢ wj(gﬁg.k)gbgl) =Y es ugk)u(l) (uNTu® = ;. Remembering

now that |[Ag| < A, for every 1 < k < N — 1, we obtain

1 N—1 1/2
n n k
[P =y < 5 A <Z<¢§ >>2>

k=1
In order to compute the term in parentheses, remember again that v; = fCV:_Ol(vTu(k)) ugk) for every
. . 1 ifi=j .
N — R S .
v € RY, so by choosing v = e, i.e., v; = d; {O otherwise’ Ve obtain:
vTuF) = ugk) and d;; = Z uz(k)ugk)
For i =j, we get §;; =1 = k o ( (k)) ZkN;ol T (¢§k))2, SO
N—1 N—1 1 1
k k 0
(@72 =3 @) - @) =—-1<—
k=1 k=0 Y " i
which finally leads to the inequality
1B — ey < S
-
TV N
and therefore completes the proof. |

1.5 Lazy random walks

Adding self-loops to a Markov chain makes it a priori “lazy”. Surprisingly perhaps, this might in some
cases speed up the convergence to equilibrium!

Adding self-loops of weight « € (0,1) to every state has the following impact on the transition matrix:
assuming P is the transition matrix of the initial Markov chain, the new transition matrix P becomes

P=al+(1-a)P
As a consequence:
e The eigenvalues also change from A\ to Xk = a+ (1 — &)\, which sometimes reduces the value of

A« = maxi<p<n—1 |M|. The spectral gap being equal to v = 1 — \,, we obtain that by reducing
A, we might increase the spectral gap as well as the convergence rate to equilibrium.



e Note that A\g stays the same: XO =a+ (1 —a) g =1, as well as the stationary distribution =:

tP=rn(al+(1-a)P)=ar+(1—a)xP =7

Example 1.5. Random walk on the circle with N = 3:
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