Markov Chains and Algorithmic Applications - IC - EPFL

Solutions 5

1. "Only if" part: Let us fix n and the sequence of $j_{1}, j_{2}, \ldots, j_{n}$. By using the detailed balance equation, we have

$$
\begin{aligned}
\pi_{j_{1}} p_{j_{1} j_{2}} p_{j_{2} j_{3}} \cdots p_{j_{n-1} j_{n}} p_{j_{n} j_{1}} & =p_{j_{2} j_{1}} \pi_{j_{2}} p_{j_{2} j_{3}} \cdots p_{j_{n-1} j_{n}} p_{j_{n} j_{1}} \\
& =p_{j_{2} j_{1}} p_{j_{3} j_{2}} \pi_{j_{3}} \cdots p_{j_{n-1} j_{n}} p_{j_{n} j_{1}} \\
& =\ldots \\
& =p_{j_{2} j_{1}} p_{j_{3} j_{2}} \cdots p_{j_{n} j_{n-1}} \pi_{j_{n}} p_{j_{n} j_{1}} \\
& =p_{j_{2} j_{1}} p_{j_{3} j_{2}} \cdots p_{j_{n} j_{n-1}} p_{j_{1} j_{n}} \pi_{j_{1}}
\end{aligned}
$$

As we know the chain is ergodic, $\pi_{j_{1}} \neq 0$, so we have

$$
p_{j_{1} j_{2}} p_{j_{2} j_{3}} \cdots p_{j_{n-1} j_{n}} p_{j_{n} j_{1}}=p_{j_{2} j_{1}} p_{j_{3} j_{2}} \cdots p_{j_{n} j_{n-1}} p_{j_{1} j_{n}}
$$

"If" part: Let us fix n and marginalize the expression $p_{j_{1} j_{2}} p_{j_{2} j_{3}} \cdots p_{j_{n-1} j_{n}} p_{j_{n} j_{1}}$ over the sequences of j_{2}, \ldots, j_{n-1} as

$$
\begin{aligned}
\sum_{j_{2}, \ldots, j_{n-1}} p_{j_{1} j_{2}} p_{j_{2} j_{3}} \cdots p_{j_{n-1} j_{n}} p_{j_{n} j_{1}} & =p_{j_{n} j_{1}} \sum_{j_{2}, \ldots, j_{n-1}} p_{j_{1} j_{2}} p_{j_{2} j_{3}} \cdots p_{j_{n-1} j_{n}} \\
& =p_{j_{n} j_{1}} \sum_{j_{2}, \ldots, j_{n-1}} \mathbb{P}\left(X_{n}=j_{n}, X_{n-1}=j_{n-1}, \ldots, X_{2}=j_{2} \mid X_{1}=j_{1}\right) \\
& =p_{j_{n} j_{1}} \mathbb{P}\left(X_{n}=j_{n} \mid X_{1}=j_{1}\right)=p_{j_{n} j_{1}} p_{j_{1} j_{n}}^{(n-1)}
\end{aligned}
$$

By repeating the same set of calculations for the expression $p_{j_{1} j_{n}} p_{j_{n} j_{n-1}} \cdots p_{j_{3} j_{2}} p_{j_{2} j_{1}}$, using the assumed equality, and considering the case for which $j_{1}=i$ and $j_{n}=k$ (i.e, fixing the first and the last state in the sequence), we have

$$
p_{k i} p_{i k}^{(n-1)}=p_{i k} p_{k i}^{(n-1)}
$$

Since the chain is ergodic, as n goes to $+\infty, p_{i k}^{(n-1)}$ and $p_{k i}^{(n-1)}$ go to π_{k} and π_{i} respectively. Therefore, we have

$$
p_{k i} \pi_{k}=p_{i k} \pi_{i}
$$

which is the detailed balance equation.
2. a) This chain is clearly ergodic. The transition matrix is

$$
\left(\begin{array}{ccc}
1-p & p & 0 \\
1 / 2 & 0 & 1 / 2 \\
0 & p & 1-p
\end{array}\right)
$$

Assume that the detailed balance equation is satisfied. Then

$$
\pi_{1}^{*} / 2=\pi_{2}^{*} p=\pi_{0}^{*} p
$$

We conclude that

$$
\pi_{0}^{*}=\pi_{2}^{*}=\frac{1}{2(1+p)} \quad \pi_{1}^{*}=\frac{p}{1+p}
$$

It is then easy to verify that $\pi^{*}=\pi^{*} P$, and so this is indeed a stationary distribution, which obviously satisfies the detailed balance equation.
b) We know that $\lambda_{0}=1$, and so, to compute the eigenvalues, we must solve the equations

$$
\begin{array}{r}
2-2 p=1+\lambda_{1}+\lambda_{2} \\
-p(1-p)=\lambda_{1} \lambda_{2}
\end{array}
$$

Solving this, we obtain that $\lambda_{1}=1-p$ and $\lambda_{2}=-p$. So $\lambda_{*}=\max (p, 1-p)$ and the spectral gap is given by $\gamma=1-\lambda_{*}=\min (p, 1-p)$.
c) For $p=\frac{1}{N}$, the spectral gap is $\gamma=\frac{1}{N}$. From the theorem seen in class, we know that $\| P_{i}^{n}-$ $\pi \|_{\mathrm{TV}} \leq \frac{\exp (-\gamma n)}{2 \sqrt{\pi_{i}}}$, so here,

$$
\max _{i \in S}\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{1}{2} \sqrt{\frac{1+1 / N}{1 / N}} \exp (-n / N) \leq \sqrt{N} \exp (-n / N)=\exp \left(\frac{\log N}{2}-\frac{n}{N}\right)
$$

Taking therefore $n \geq N\left(\frac{\log N}{2}+c\right)$ with $c>0$ sufficiently large (more precisely, $c=\log (1 / \varepsilon)$) ensures that the maximum total variation norm is below ε.
d) For $p=1-\frac{1}{N}$, the spectral gap is again $\gamma=\frac{1}{N}$. So

$$
\max _{i \in S}\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{1}{2} \sqrt{2(2-1 / N)} \exp (-n / N) \leq \exp (-n / N)
$$

Taking therefore $n \geq c N$ with $c=\log (1 / \varepsilon)$ ensures that the maximum total variation norm is below ε, so

$$
T_{\varepsilon} \leq N \log (1 / \varepsilon)
$$

3. a) The transition matrix being doubly stochastic, the stationary distribution is uniform (i.e. $\pi_{i}=\frac{1}{2 N}$ for every $\left.i \in S\right)$ and satisfies the detailed balance equation.
b) Solving the equation $P \phi^{(1)}=\lambda \phi^{(1)}$, we obtain

$$
\begin{aligned}
& \frac{N-1}{N} a+\frac{1}{N} b=\lambda a \\
& \frac{N-1}{N} a-\frac{1}{N} b=\lambda b
\end{aligned}
$$

which is saying that λ is an eigenvalue of the 2×2 matrix

$$
\left(\begin{array}{cc}
\frac{N-1}{N} & \frac{1}{N} \\
\frac{N-1}{N} & -\frac{1}{N}
\end{array}\right)=\left(\begin{array}{cc}
1-\delta & \delta \\
1-\delta & -\delta
\end{array}\right)
$$

where we have set $\delta=\frac{1}{N}$. These eigenvalues are given by

$$
\lambda_{ \pm}=\frac{1-2 \delta \pm \sqrt{(1-2 \delta)^{2}+8 \delta(1-\delta)}}{2}=\frac{1-2 \delta \pm \sqrt{1+4 \delta-4 \delta^{2}}}{2}
$$

For δ small (i.e. N large), the largest of these 2 eigenvalues is λ_{+}, which is approximately given by

$$
\lambda_{+} \simeq \frac{1-2 \delta+\left(1+2 \delta-4 \delta^{2}\right)}{2}=1-2 \delta^{2}=1-\frac{2}{N^{2}}
$$

so the spectral gap $\gamma \simeq \frac{2}{N^{2}}$.
c) By the theorem seen in class,

$$
\max _{i \in S}\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}} \leq \frac{\sqrt{2 N}}{2} \exp (-\gamma n) \leq \sqrt{2} \exp \left(\frac{\log N}{2}-\frac{2 n}{N^{2}}\right)
$$

is below ε for $n \geq \frac{N^{2}}{2}\left(\frac{\log N}{2}+\log (\sqrt{2} / \varepsilon)\right)$, so

$$
T_{\varepsilon} \leq \frac{N^{2}}{2}\left(\frac{\log N}{2}+\log (\sqrt{2} / \varepsilon)\right)
$$

