1) b)
$$V = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$
 is the closest to $M = (\frac{1}{2}, 0, \frac{1}{2})$:

 $\|V - M\|_{TV} = \frac{1}{2}(|\frac{1}{3} - \frac{1}{2}| + \frac{1}{3} + |\frac{1}{3} - \frac{1}{2}|) = \frac{1}{3}$

d) $V = (0.1, 0)$ is the facthest to $M = (\frac{1}{2}, 0.1)$: $\|M\|_{TV} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is the facthest to $M = (\frac{1}{3}, 0.1)$; $\|M\|_{TV} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is the facthest to $M = (\frac{1}{3}, 0.1)$; $\|M\|_{TV} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is the facthest to $M = (\frac{1}{3}, 0.1)$; $\|M\|_{TV} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is the closest to $M = (\frac{1}{3}, 0.1)$; $\|M\|_{TV} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is the closest to $M = (\frac{1}{3}, 0.1)$; $\|M\|_{TV} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is the closest to $M = (\frac{1}{3}, 0.1)$; $\|M\|_{TV} = (\frac{$

d)
$$V = (0,1,0)$$
 is the farthest to $M = (\frac{1}{2},0,\frac{1}{2}): ||M-V||_{\mathcal{N}} = 1$

2) c)
$$A = \{1,2\}$$
 is the answer: $\|p - y\|_{TV} = \frac{1}{2}(\frac{1}{2} + 0 + \frac{1}{2}) = \frac{1}{2}$
and $p(A) - y(A) = \frac{1}{2} - 0 = \frac{1}{2}$

and
$$M(A) - Y(A) = \frac{1}{2} - 0 = \frac{1}{2}$$

(Note that $A = \{2\}$ would also work, and that $A = \{0,1\}$)
$$g_{Ves} M(A) - Y(A) = \frac{1}{2} - 1 = -\frac{1}{2}, \text{ so } |M(A) - Y(A)| = |MM - Y|M_{TV}|$$

3) a), d), e) and f) are carplings of M & v: a) is the grand carpling ": P(X=7)=1 e) is the "statistical cauping": X& 4 are independent d) is sanething inbetween (pasitive correlation between X&Y) f) is the case where X, Y are the most negatively correlated as possible

For b) and c), computing the marginals Mo=for+ for etc. does not lead to the desired values for M & V.

Subsidiary question: $N_{\mu}-\nu N_{\tau\nu}=0$, and the only carpling for which $R(X\pm Y)=0$ is the "grand carpling" a).