MCAA lecture 4: quiz sdutions

1) b) $\nu=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is the closest to $\mu=\left(\frac{1}{2}, 0, \frac{1}{2}\right)$:

$$
\|\nu-\mu\|_{T v}=\frac{1}{2}\left(\left|\frac{1}{3}-\frac{1}{2}\right|+\frac{1}{3}+\left|\frac{1}{3}-\frac{1}{2}\right|\right)=\frac{1}{3}
$$

d) $\nu=(0,1,0)$ is the farthest to $\mu=\left(\frac{1}{2}, 0, \frac{1}{2}\right): \| \mu-\nu U_{\pi}=1$ [and a), c) are both at distance $\frac{1}{2}$]
2) c) $A=\{1,2\}$ is the answer: $\|\mu-\nu\|_{T v}=\frac{1}{2}\left(\frac{1}{2}+0+\frac{1}{2}\right)=\frac{1}{2}$ and $\mu(A)-\nu(A)=\frac{1}{2}-0=\frac{1}{2}$
$\binom{$ Note that $A=\{2\}$ would also work, and that $A=\{0,1\}}{$ gives $\mu(A)-\nu(A)=\frac{1}{2}-1=-\frac{1}{2}$, so $|\mu(A)-\nu(A)|=\|\mu-\nu\|_{\pi \nu}}$
3) a), d), $e)$ and f) are carpings of $\mu \& \nu$:
a) is the "grand coupling": $\mathbb{P}(X=y)=1$
e) is the "statistical coupling": $X \& 4$ are independent
d) is something inbetween (pastie correlation between X\&Y)
f) is the case where X, Y are the most negatively correlated as possible
For b) and c), computing the marginals $\mu_{0}=P_{0}+P_{0}$ etc. does not lead to the desired values for $\mu \& \nu$.

Subsidiary question: $\| \mu-\nu U_{\pi v}=0$, and the orly cayphing for which $R(x \neq y)=0$ is the "grand coupling" a)

