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1. a) The chain is partitioned into two equivalence classes: 1. Non-negative numbers and odd
negative numbers, and 2. Even negative numbers. Given that the state space is finite, we obtain
after looking at the structure of the transition graph that the 1st class is positive recurrent, and
the 2nd class is transient. So, using the first theorem in the lecture, the 1st class has a stationary
distribution π1. Therefore, one possible option for π is to choose it in a way to be zero for the
transient class and equal to π1 for the 1st class, which is unique given the assumption of the exercise
(proved at the end of the solution). So, it is sufficient to find π1 over the first class, i.e., non-negative
numbers and odd negative numbers.

Therefore, we have

π(i) =


π1(i) 0 ≤ i ≤ N ,

π1(−k) i = −2k + 1 for a k ∈ {1, 2, ...,K+ = ⌈N2 ⌉} ,
0 i = −2k for a k ∈ {1, 2, ...,K− = ⌊N2 ⌋} .

The stationary distribution must satisfy the following two 2nd order difference equations:{
π1(−k) = 1

2

(
π1(−k − 1) + π1(−k + 1)

)
, k ∈ {1, 2, ...,K+ − 1} ,

π1(k) =
1
2

(
π1(k − 1) + π1(k + 1)

)
, k ∈ {2, ..., N − 1},

which has a unique solution as{
π1(−k) = A− +B−k, k ∈ {1, 2, ...,K+ − 1} ,
π1(k) = A+ +B+k, k ∈ {2, ..., N − 1},

where A−, A+, B−, and B+ should be found by satisfying the following boundary conditions.

1. Left end: {
π1(−K+) = 1

2

(
π1(−K+) + π1(−K+ + 1)

)
,

π1(−K+ + 1) = 1
2

(
π1(−K+) + π1(−K+ + 2)

)
.

2. Right end: {
π1(N) = 1

2

(
π1(N) + π1(N − 1)

)
,

π1(N − 1) = 1
2

(
π1(N) + π1(N − 2)

)
.

3. Origin: 
π1(−1) = 1

2

(
π1(−2) + π1(0)

)
,

π1(0) =
1
2π1(1),

π1(1) =
1
2

(
π1(−1) + π1(0) + π1(1)

)
,

π1(2) =
1
2

(
π1(1) + π1(3)

)
.

The conditions for the two ends leads to the equalities π1(N − 1) = π1(N − 2) and π1(−K+ +1) =
π1(−K++2), which leads to B+ = B− = 0. The conditions for the intersection in the origin, leads
a relation between A− and A+ as A+ = 2A−. As a result, the stationary distribution is{

π1(−k) = q, k ∈ {0, 1, ...,K+} ,
π1(k) = 2q, k ∈ {1, 2, ..., N} .
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and as a result

π(i) =


2q 1 ≤ i ≤ N ,
q i = 0 ,

q i = −2k + 1 for a k ∈ {1, 2, ...,K+ = ⌈N2 ⌉} ,
0 i = −2k for a k ∈ {1, 2, ...,K− = ⌊N2 ⌋} .

where q = A− should be found in a way to satisfy the condition that the sum of probabilities is 1,
as

q =
1

2N +K+ + 1
.

b) The probability of being on the negative part is as

∑
−N≤k<0

π(k) = K+q =
K+

2N +K+ + 1

which is roughly equal to 0.2 for N >> 1.

Bonus part of a) Let us consider indexes {1, 2, ..., N+K++1} for the states in the first equivalence
class C1, and indexes {N +K+ + 2, ..., 2N + 1} for the states in the equivalence class C2. Then,
the transition probability matrix for this chain can be written as

P =

[
PC1C1 PC1C2

PC2C1 PC2C2

]
.

Since there is no path from C1 to C2, the matrix PC1C2 is a zero matrix. Let us also show the
stationary distribution of this chain with π = [π1, π2]. To be a stationary probability distribution,
π should be a left eigenvector of P with eigenvalue equal to 1, which leads to

π1 = π1PC1C1 + π2PC2C1 ,

π2 = π2PC2C2 .

Since C2 is a transient equivalence class and PC2C2 is not a proper transition probability matrix (the
summation of elements of some of its rows is not equal to 1), PC2C2 does not have any eigenvalue
equal to 1. Therefore, the mentioned equations can be simplified as

π1 = π1PC1C1 ,

π2 = 01×K− .

Since C1 has a unique stationary distribution (according to theorem 1), π is unique as

π = [π1, 01×K− ],

where π1 is the unique probability distribution of C1. This is exactly what we found for the chain
in part a).
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2. a) First observe that the transition probabilities do not depend on the particular shape of
the (convex) polygon, but just on the number of edges. Consider next a polygon with j + 3 edges
initially. After the transition, the smallest possible polygon will have 3 edges and the largest possible
polygon will have j + 4 edges. Thus the resulting polygons have k + 3 edges with 0 ≤ k ≤ j + 1.
Since the transition is uniformly random, pjk = 1

j+2 , for 0 ≤ k ≤ j + 1.

b) Thus,

E(Xn|Xn−1 = j) =

j+1∑
k=0

k pjk =
1

j + 2

j+1∑
k=0

k =
(j + 1)(j + 2)

2(j + 2)
=

j + 1

2

and

E(Xn) =
∑
j≥0

E(Xn|Xn−1 = j)P(Xn−1 = j) =
1 + E(Xn−1)

2

Repeating this, we obtain E(Xn) = 1− (1/2)n + (1/2)n E(X0).

c) Consider (Xn, n ≥ 0) initialized with some initial distribution for X0. Repeating the above
computation, we obtain

E(sXn |Xn−1 = j) =
1

j + 2

j+1∑
k=0

sk =
1

j + 2

1− sj+2

1− s

This implies that Gn(s) =
1

1− s
E

(
1− s(Xn−1+2)

Xn−1 + 2

)
.

d) Now consider the process (Xn, n ≥ 0) initialized with X0 ∼ π, where π is the stationary
distribution. Since π = πP by definition, we have Xn ∼ π and Xn−1 ∼ π, so G(s) = E(sXn) =
E(sXn−1) for all n ≥ 1, and by part 3, we also have

G(s) =
1

1− s
E

(
1− s(Xn−1+2)

Xn−1 + 2

)
where E is taken with respect to π.

Differentiating with respect to s, we obtain

G′(s) =
1

(1− s)2
E
(
1− sXn−1+2

Xn−1 + 2

)
− 1

1− s
E
(
Xn−1 + 2

Xn−1 + 2
sXn−1+1

)
=

1

1− s
G(s)− 1

1− s
sG(s) = G(s)

One checks also that G(1) = 1 (using Bernoulli-L’Hospital’s rule), so the solution of this differential
equation is G(s) = es−1.

e) GY (s) =
∑

k≥0 λ
k e−λ sk/k! = e−λ

∑
k≥0(sλ)

k/k! = eλ(s−1). Hence the stationary distribution
of the Markov chain is Poisson with parameter 1.

3. a) Clearly, all states i s.t. i is not a power of 2 are transient. Indeed, if i is not a power of 2,
then P(Xn = i for some n > 0 | X0 = i) = 0.

Let us consider now the state 1. Then,

f11(n) = cn−1(1− c), for n ≥ 1.
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Hence,

f11 =
∑
n≥1

f11(n) = (1− c)
∑
n≥1

cn−1 =
1− c

1− c
= 1

and

µ1 =
∑
n≥1

nf11(n) = (1− c)
∑
n≥1

ncn−1 =
1

1− c
< +∞,

which implies that the state 1 is positive-recurrent. As concerns the states {2k}k≥1, they form
together with state 1 an equivalence class of the Markov chain. Therefore, they are also positive-
recurrent.

b) Let π be the stationary distribution (in case it exists). Then, by solving π = πP , we obtain
π1 = (1− c)

∑
i∈N π2i = 1− c

π2k = c · π2k−1 k ≥ 1
πi = 0 otherwise

Hence, the stationary distribution exists, is unique and is given by{
π2k = (1− c) · ck k ≥ 0
πi = 0 otherwise

c) In general, by solving π = πP , we obtain
π1 =

∑
k∈N(1− p2k)π2k

π2k = p2k−1 · π2k−1 k ≥ 1
πi = 0 otherwise

Therefore, π2k =
∏k−1

j=0 p2j π1, so the stationary distribution exists and is unique if and only if

∑
k∈N

k−1∏
j=0

p2j < +∞. (1)

(otherwise it would imply that π1 = 0).

d) Consider now the case ck = p2k = 1 − 1

2k + 1
. We will show that limk→∞

∏k
j=0 cj ̸= 0, which

implies, through condition (1), that the stationary distribution does not exist. Note first that

lim
k→∞

k∏
j=0

cj = 0 ⇐⇒ lim
k→∞

k∑
j=0

log
1

cj
= +∞.

In addition,

lim
k→∞

k∑
j=0

log
1

cj
= lim

k→∞

k∑
j=0

log
(
1 + 2−j

)
≤ lim

k→∞

k∑
j=0

2−j = 2 < +∞,

where we used the fact that log(1+ x) ≤ x for any x ∈ [0, 1]. As a result,
∑

k∈N
∏k−1

j=0 cj = +∞, so
the stationary distribution does not exist in this case.
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