1) Which of the following Markov chains admits:
 - a unique stationary distribution?
 - a (unique) limiting distribution?

 \[a) \quad 1 \rightarrow 2 \rightarrow 3 \]
 \[b) \quad 1 \rightarrow 2 \rightarrow 3 \]
 \[c) \quad 1 \rightarrow 2 \rightarrow 3 \]
 \[d) \quad 1 \rightarrow 2 \rightarrow 3 \]
 \[e) \quad \text{(diagram)} \]
 \[f) \quad \text{(diagram)} \]
2) Which of the following statements is correct?

a) If X is an irreducible and null-recurrent chain, then
 a1) its state space S is infinite
 a2) it does not admit a stationary distribution
b) If X is finite and irreducible, then it admits a unique limiting and stationary distribution.
c) If X does not admit a unique stationary distribution, then some states are not positive-recurrent.
d) If X admits a stationary distribution (not necessarily unique), then some states are positive-recurrent.