Stationary distribution

Distribution at time n: $\pi_j^{(n)} = P(X_n = j) \, \forall n \in \mathbb{N}, j \in S$

\[
\pi_j^{(n+1)} = \sum_{i \in S} \pi_i^{(n)} P_{ij} \quad \forall j \in S
\]

In vector form: \(\pi^{(n+1)} = \pi^{(n)} \cdot P\)

raw vector \quad raw vector matrix

Definition: A (probability) distribution \(\pi = (\pi_i, i \in S)\)

\([0 \leq \pi_i \leq 1, \sum_{i \in S} \pi_i = 1]\) is a **stationary distribution** for the

Markov chain \(X\) if \(\pi_j = \sum_{i \in S} \pi_i P_{ij} \quad \forall j \in S\)

i.e. \(\pi = \pi \cdot P\)
Implications:
- If π is stationary, then $\pi \cdot P^n = \pi \cdot P \cdot P^{n-1} = \pi P^{n-1} = \cdots = \pi$
- If $\pi^{(0)} = \pi$ (stat. dist.), then $\pi^{(n)} = \pi^{(0)} \cdot P^n = \pi \cdot P^n = \pi$ $\forall n \in \mathbb{N}$

Remarks:
- A stationary distribution is a solution of a system of linear equations; it is not necessarily the case that $\lim_{n \to \infty} \pi^{(n)} = \pi$
- π may not exist in some cases
- π may not be unique in some other cases
- Practical remark: in the system of N equations $\pi = \pi \cdot P$ (assume $|S| = N$), there is always one redundant equation; in order to determine π, we need to use also the condition $\sum_{i \in S} \pi_i = 1$.
Mathematical remark:

Define \(\mathbf{1} \) = “all-ones” column vector

Then \(P \cdot \mathbf{1} = \mathbf{1} \cdot \mathbf{1} \) (i.e. \(\sum_{j \in S} p_{ij} = 1 \) \(\forall i \in S \))

“Stochastic matrix”

So \(\mathbf{1} \) is an eigenvector of the matrix \(P \) (on the right) with corresponding eigenvalue \(1 \).

Now if there exists a row vector \(\mathbf{T} \) s.t. \(\mathbf{T} = \mathbf{T} \cdot P \), then \(\mathbf{T} \) is also an eigenvector of \(P \) (on the left) with the same eigenvalue \(1 \).
Theorem [without proof]

Let X be an irreducible Markov chain. Then X is positive-recurrent \iff X admits a stationary distribution π. In addition, in this case, if π exists, then it is unique and given by $\pi_i = \frac{1}{\mu_i} = \frac{1}{\sum (T_i(X_0 = i))}$ for all $i \in S$.

Note: X is positive-recurrent $\Rightarrow \mu_i < \infty$, so $\pi_i > 0$ for all $i \in S$.

Corollary: A finite irreducible chain always admits a unique stationary distribution.
Example

Cyclic random walk

\[S = \{0, \ldots, N-1\} \]

finite, irreducible

\[\Rightarrow \text{positive-recurrent} \]

Then

\[\exists \text{ exists } & \text{is unique} \]

\[P = \begin{pmatrix}
0 & \ldots & 0 & q \\\nq & \ldots & q & 0 \\
0 & \ldots & 0 & q \\
p & \ldots & q & 0 \\
\end{pmatrix} \]

\[p+q=1 \]
\[0 < p, q < 1 \]

\[\sum_{i \in S} p_{ij} = 1 \quad \forall i \in S \]

\[\sum_{i \in S} p_{ij} = 1 \quad \forall i \in S \]

"doubly stochastic matrix"
Proposition

If X is a finite irreducible chain whose transition matrix P is doubly stochastic, then it admits a unique stationary distribution π and π is uniform: $\pi_i = \frac{1}{N}$ $\forall i \in S$ ($|S|=N$).

Proof: Plug $\pi_i = \frac{1}{N}$ into the equation $\pi = \pi P$.

$$\frac{1}{N} = \sum_{i \in S} \frac{1}{N} P_{ij} \quad \forall i \in S?$$

$$1 = \sum_{i \in S} P_{ij} \quad \forall i \in S? \quad \checkmark \quad \text{because } P \text{ is doubly stochastic}$$

(uniqueness guaranteed by the theorem)
Back to the example

- So \(\pi_i = \frac{1}{N} \) \(\forall i \in \{0, \ldots, N-1\} \)

The thin also says that \(\pi_i = \frac{1}{\mu_i} \) so \(\mu_i = N \forall i \)

- So \(\pi \) uniform is the "stationary" distribution of the chain

\[\uparrow \]

when \(p \neq q \), a rotation occurs permanently in one direction or the other => not "truly" stationary
Counter-example

Symmetric simple random walk on \(\mathbb{Z} \):

irreducible, recurrent but null-recurrent

Let us prove that the chain is null-recurrent using the theorem: look for a stationary distribution \(\pi \):

\[\pi = \pi P \quad \text{i.e.} \quad \forall i \in \mathbb{Z} \quad \pi_i = \frac{1}{2}(\pi_{i+1} + \pi_{i-1}) \]

\[\Rightarrow \quad \pi_i = \pi_j \quad \forall i, j \in \mathbb{Z} \quad \rightarrow \text{problem!} \]

The uniform distribution does not exist on \(\mathbb{Z} \)!

\[\Rightarrow \quad \pi \text{ does not exist} \quad \Rightarrow \quad X \text{ is not positive-recurrent} \]

Thus

\[\Rightarrow \quad X \text{ is null-recurrent. \#} \]
What if the chain is not irreducible?

- Two positive-recurrent classes:

 \[\Rightarrow \text{a stationary distribution exists} \]
 \[\text{but is not unique!} \]

 \[\begin{align*}
 \pi^{(1)} &= \left(\frac{1}{2}, \frac{1}{2}, 0, 0 \right), \\
 \pi^{(2)} &= \left(0, 0, \frac{1}{2}, \frac{1}{2} \right), \\
 \pi^{(3)} &= \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right)
 \end{align*} \]

 \[\begin{align*}
 \pi &= \left(\frac{\alpha}{2}, \frac{\alpha}{2}, \frac{1-\alpha}{2}, \frac{1-\alpha}{2} \right), \\
 0 \leq \alpha \leq 1 \text{ are stationary distributions of the chain}
 \end{align*} \]
• Two positive-recurrent classes and one transient class:

\[\Pi \text{ exists but is not unique: } \Pi = \left(\frac{x}{2}, \frac{x}{2}, 0, 0, \frac{1-x}{2}, \frac{1-x}{2} \right) \]

• Two transient classes and one positive-recurrent class:

\[\Pi \text{ exists and is unique: } \Pi = (0, 0, \frac{1}{2}, \frac{1}{2}, 0, 0) \]
Limiting distribution

Definition: A distribution \(\pi \) is a limiting distribution for the Markov chain \((x_n, n \geq 0) \) if

for any initial distribution \(\pi^{(0)} \), \(\lim_{n \to \infty} \pi^{(n)} = \pi \)

Remarks:

- such a limiting distribution may not exist
- but if it exists, then it is unique!
- if \(\pi \) is a limiting distribution, then it is a stationary dist.

Proof: \(\pi^{(n+1)} = \pi^{(n)}. P \) \(\forall n \in \mathbb{N} \)

\(\lim_{n \to \infty} \pi^{(n)} = \pi. P \)

"#" (\(\Delta |S| = \pm \infty \) case)
Def: A Markov chain is **ergodic** if it is irreducible, aperiodic and positive-recurrent.

Ergodic theorem

Let X be an ergodic Markov chain. Then it admits a unique limiting and stationary distribution π, i.e.:

- $\forall \pi^{(0)}$, $\lim_{n\to\infty} \pi^{(n)} = \pi$
- $\pi = \pi P$

$\forall i,j \in S$

$\lim_{n\to\infty} P(X_n = j | X_0 = i) = \pi_j$
Remark: aperiodicity matters!

Ex: consider the chain

\[p = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

periodicity = 2

stationary distribution?

\[\pi P \rightarrow \pi = \left(\frac{1}{2}, \frac{1}{2} \right) \]

is the solution

hunting distribution?

if \(\pi^{(0)} = (1, 0) \), then \(\pi^{(1)} = (0, 1) \), \(\pi^{(2)} = (1, 0) \) ...

so \(\lim_{n \to \infty} \pi^{(n)} \) does not exist!
Modified ex: \(P = \begin{pmatrix} \frac{3}{1} & \frac{3}{1} \\ \frac{1}{1} & \frac{1}{1} \end{pmatrix} \)

finite, reducible, aperiodic chain \(\Rightarrow \) ergodic

\[\Rightarrow \exists! \ \pi = \text{limiting & stationary distribution} \]

Last remark: So can't we say anything for a periodic chain? Yes we can!

(irreducible & positive-recurrent)

\[\forall \pi(0), \quad \frac{1}{n} \sum_{k=1}^{n} \pi_i(k) \xrightarrow{n \to \infty} \pi_i, \quad \forall i \in S \]