
Markov Chains and Algorithmic Applications: WEEK 2

1 Recurrence and transience

Definition 1.1. •

- A state i ∈ S is recurrent if fii = P(∃n ≥ 1 such that Xn = i | X0 = i) = 1
(i.e., the probability that the chain returns to state i in finite time is equal to 1).

- A state i ∈ S is transient if fii < 1.

So a state is recurrent if and only if it is not transient.
Note in particular that it is not necessary that fii = 0 for state i to be transient.

Examples.
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Figure 1: Here states A, B and C are transient and D is recurrent.
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Figure 2: For 0 < p, q < 1 and p+ q = 1, are the states transient or recurrent ?

Facts. •

- In a given equivalence class, either all states are recurrent, or all states are transient.

- In a finite chain, an equivalence class is recurrent iff there is no arrow leading out of it.
(So a finite irreducible chain is always recurrent.)

- In a infinite chain, things are more complicated. (The chain might ”escape to infinity”.)

In order to deal with infinite chains, we need to establish a relation between the following two sequences
of numbers:

· p(n)ii = P(Xn = i|X0 = i) (with the convention p
(0)
ii = 1)

· f (n)ii = P(Xn = i,Xn−1 6= i, . . . ,X1 6= i|X0 = i) (with the convention f
(0)
ii = 0)

In words, f
(n)
ii is the probability that, having left state i at time 0, the chain returns to state i at time n

for the first time.
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Lemma 1.2. ∀n ≥ 1, we have:

p
(n)
ii =

n∑
m=1

f
(m)
ii p

(n−m)
ii

Proof. Let

An = {Xn = i} : p
(n)
ii = P(An|X0 = i)

Bn = {Xn = i,Xn−1 6= i, . . . ,X1 6= i} : f
(n)
ii = P(Bn|X0 = i)

If the event An takes place, then it must be that one of the event B1, . . . , Bn also happen (because in the
worst case, X will return to state i at time n). Therefore:

p
(n)
ii = P(An|X0 = i) = P(An

⋂
(
⋃n

m=1Bm) |X0 = i)

=

n∑
m=1

P(An ∩Bm|X0 = i) =

n∑
m=1

P(An|Bm, X0 = i)P(Bm|X0 = i)

=

n∑
m=1

P(Xn = i|Xm = i,Xm−1 6= i, . . . ,X1 6= i,X0 = i)︸ ︷︷ ︸
=p

(n−m)
ii

P(Xm = i,Xm−1 6= i, . . . ,X1 6= i|X0 = i)︸ ︷︷ ︸
=f

(m)
ii

where we have used the Markov property in the last equality leading to the term p
(n−m)
ii .

Proposition 1.3. A state i ∈ S is recurrent iff
∑

n≥1 p
(n)
ii = +∞.

(So a state i ∈ S is transient iff
∑

n≥1 p
(n)
ii < +∞)

Proof. First note

fii = P(∃n ≥ 1 s.t. Xn = i | X0 = i) = P(
⋃

n≥1Bn|X0 = i) =
∑

n≥1 P(Bn|X0 = i) =
∑

n≥1 f
(n)
ii

So what we need to prove is that
∑

n≥1 f
(n)
ii = 1 iff

∑
n≥1 p

(n)
ii = +∞.

Observe that there is a convolution relation between p
(n)
ii ’s and f

(n)
ii ’s. We will therefore use generating

functions to get a simpler relation. Define for s ∈ [0, 1]:

Pii(s) =
∑
n≥0

snp
(n)
ii and Fii(s) =

∑
n≥0

snf
(n)
ii

We will need now the following fact, also known as Abel’s theorem:

Fact (Abel’s Theorem). Let (an, n ≥ 0) be a sequence of numbers s.t. 0 ≤ an ≤ 1, ∀n ≥ 0. Then,
A(s) =

∑
n≥0 s

nan converges ∀s, |s| < 1 and

either lim
s→1

A(s) =
∑
n≥0

an ∈ R+ or lim
s→1

A(s) =
∑
n≥0

an = +∞

So for |s| < 1, we have:

Pii(s) = 1 +
∑
n≥1

snp
(n)
ii = 1 +

∑
n≥1

sn

(
n∑

m=1

f
(m)
ii p

(n−m)
ii

)

= 1 +
∑
n≥1

n∑
m=1

smsn−mf
(m)
ii p

(n−m)
ii = 1 +

∑
m≥1

∑
n≥m

smf
(m)
ii sn−mp

(n−m)
ii

= 1 +
∑
m≥1

smf
(m)
ii

∑
k≥0

skp
(k)
ii = 1 + Fii(s)Pii(s)

remembering that f
(0)
ii = 0, by convention.
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Hence, Pii(s) = 1
1−Fii(s

for all |s| < 1 and by Abel’s theorem:∑
n≥0

p
(n)
ii = lim

s→1
Pii(s) = +∞ iff fii =

∑
n≥0

f
(n)
ii = lim

s→1
Fii(s) = 1

Remark. ∑
n≥1

p
(n)
ii =

∑
n≥1

P(Xn = i|X0 = i) = expected number of visits of state i |X0 = i

So this expected number of visits of state i is infinite iff i is recurrent.

Example 1.4. - One-dimensional simple (a-)symmetric random walk: by Homework 1, Exercise 1:

p
(2n)
00 ≈ (4pq)n√

πn
for n large

The chain is recurrent iff state 0 is recurrent iff∑
n≥1

p
(n)
00 = +∞ iff

∑
n≥1

p
(2n)
00 = +∞ iff

∑
n≥1

(4pq)n√
πn

=∞

iff p = q = 1/2 (else 4pq < 1 and the series converges).

- Two-dimensional simple symmetric random walk (see Homework 1, Exercise 2):

p
(2n)
00 ≈ 1

πn
for n large

so
∑

n≥1 p
(2n)
00 = +∞ and the chain is reccurent.

- Three-dimensional simple symmetric random walk: see Homework 2, Exercise 2.

2 Positive and null-recurrence

Let Ti = inf{n ≥ 1 : Xn = i} be the first recurrence time to state i. So f
(n)
ii = P(Ti = n|X0 = i) and

fii =
∑
n≥1

f
(n)
ii =

∑
n≥1

P(Ti = n|X0 = i) = P(Ti < +∞|X0 = i)

{
= 1 iff i is recurrent

< 1 iff i is transient

Definition 2.1. The mean recurrence time to state i is defined as µi = E(Ti|X0 = i) •

- if i is transient, then P(Ti = +∞|X0 = i) > 0, so µi = +∞.

- if i is recurrent, then µi =
∑

n≥1 nP(Ti = n|X0 = i) ≥ 0 ∈ [1,+∞].

In this case, we say that •

- i is positive-recurrent if µi < +∞.

- i is null-recurrent if µi = +∞.
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Remarks. •

- What does is mean to be recurrent ? By time-homogeneity, this implies that the chain will visit
state i an infinite number of times with probability 1.

- In the case of a positive-recurrent state, the average time duration between two visits is finite.

- In the case of a null-recurrent state, this average time duration between two visits is infinite, but
the probability to return in finite time is 1, as counter-intuitive as it may be!

Facts. •

- In a given equivalence class, either all states are transient, or all state are positive-recurrent, or all
states are null-recurrent.

- A finite irreducible chain is always positive-recurrent.

Example.

0 1 2-1-2 . . .. . .

p p p p p p

qqqqqq

•

· p 6= q =⇒ transient chain =⇒ P(T0 = +∞|X0 = 0) > 0 and µ0 = +∞

· p = q = 1
2 =⇒ recurrent chain =⇒ P(T0 = +∞|X0 = 0) = 0, but µ0 = +∞ also (without

proof); the chain is null-recurrent in this second case.
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