Haptic interfaces

```
1. Definition, scope and history
2. Haptic display characteristics
3. Haptic display types
4. Haptic design guidelines
5. Haptic interaction through virtual coupling
6. From Haptic to pseudo-haptic feedback
```


5. Haptic interaction through virtual coupling

- Requested haptic control update rate: min 600 Hz up to 1 KHz – 2 KHz
 - Otherwise instabilities or the haptic sensation is too soft.

- But 1 KHz /1ms is not sufficient for updating & displaying the whole state of the VR interaction
 - Difficult to prevent a visible interpenetration
- Solution: coordinate two systems [M 1996]:
 - haptic rendering updated at 1 KHz
 - simulation and graphical update at 20 Hz 60 Hz
 - coordination through *Virtual Coupling [L 2006]* with the concept of **proxy**, named **god object** in [Z 1995])

Instability scenario Initial state avatar collision response after repulsion

5. Haptic interaction through virtual coupling (2)

- Improving the avatar with the proxy [Z 1995, TVR Vol3, LO 2006]
 - <u>Goal:</u> encapsulate the *history* of the interaction to prevent arbitrary discontinuity in the computation of the collision response (rigid objects)

Initial state

The avatar and the proxy coincide when there is no collision

collision response without proxy:

the avatar may sink into the object...

...and if the user pushes a bit deeper one gets closer to a different surface

Tracked user location

collision response with **proxy**(only the **avatar-proxy** is displayed)

The proxy preserves the coherence of the interaction

5. Haptic interaction through virtual coupling (3)

Tracking the proxy across polygons[H2000]

The proxy preserves the coherence of the interaction; however some discontinuity is still possible

the new polygon normal defines the boundary for polygon switching

Typical complexity for N polygons [H2000]:

First intersection:
log(N) provided the meshes are organized with hierarchical bounding boxes or similar approach (cf UNC GAMMA project)

Tracking the intersection is in O(1) because only neighbour polygons are explored

Implementation of the avatar-proxy concept

with the Haptic
Workstation = 2
CyberForce &
Cybergrap

The proxy concept is extended to the full articulated hand [Ott et al 2008] (.avi)

5. Haptic interaction through virtual coupling (3)

The sink-in problem [B2006]

The avatar-proxy solution [B 2006]

- But the proxy induces a visual-proprioceptive discrepancy [B 2006]
 - <u>Translation:</u> what the user sees does not match exactly with the current arm posture
 - Example: in case of a hand avatar: it is not displayed exactly where it should be in space.
 The user hand is no more co-located with its visual representation.

<u>Question:</u> is such visual-proprioceptive discrepancy more disturbing than seeing the correct location of the virtual hand sinking in a virtual obstacle?

5. Haptic interaction through virtual coupling (4)

- **E. Burns** et al study, at UNC [B 2006] showed that users are less sensitive to small posture missmatch than to visual sink-in, i.e. *vision* dominates *proprioception*.
- Additional study in [B 2007] regarding the *retraction* phase, when the *user moves* backward, e.g. by a quantity Δ . Compared 3 methods:
 - *rubber-band*: the proxy does **not move** until the avatar reaches it
 - Velocity discrepancy
 - Incremental motion: the proxy start moving backward with exactly the same quantity as the user
 - Position discrepancy (detection threshold = 20 cm)
 - Hybrid technique MACBETH: the proxy makes a scaled movement allowing to progressively reach back the tracked user hand.

5. From Haptic to pseudo-haptic feedback

- The avatar-proxy management and display is possible even without haptic device.
- <u>Pseudo-haptic</u>: Instead of synthesing a force it is possible to render the error between the **tracked user** and the **avatar-proxy** through an alternate modality (visual, audio, ...)

The error **e** can be used to modulate the *rendering* of the avatar-proxy and/or the interacting object.

More than a single sensory channel can be used as substitution channel:

- **visual** (color, texture, special particle effects, etc...)
- audio (modulated sound).
- reduced avatar movement velocity to model friction or moving through a more viscous medium

• For complex interaction such as grasping, it is recommended to model the interaction with an assistive automaton [D2020] to make the right decision at the right moment.

On-going research

- Interaction with deformable tissues (e.g. training surgery)
- Training minimally invasive surgery

[Software Development Kits & Libraries]

- UNC Gamma software resource on fast collision detection :
 - http://gamma.web.unc.edu/software/
- Sensable GHOST SDK / now OpenHaptics Toolkit
- Force Dimension Haptic SDK / CHAI3D open source lib
- Haption IPSI library for Catia TM
- Immersion MOTIV TM SDK for tactile effects on Android mobile phones
- Reachin & HAPTX Software products
- **SOFA** www.sofa-framework.org for physics-based deformation
- Physically-based Simulation: Nvidia PhysX(in Unity3D), Bullet.org

[References]

[TRV 2006] Traité de Réalité Virtuelle, Ed. P. Fuch, Vol 2, chap 6-8, Vol 3, chap 5-6

[BKLP 2005] 3D User Interfaces, D. Bowmann, E. Kruijff, J. LaViola, I. Poupyrev, Addison Wesley, 2005

[B 1990] Frederick P. Brooks, Jr., Ming Ouh-Young, James J. Batter, and P. Jerome Kilpatrick. 1990. Project GROPEHaptic displays for scientific visualization. SIGGRAPH Comput. Graph. 24, 4 (September 1990), 177-185. http://doi.acm.org/10.1145/97880.97899

[B 2006] E. Burns PhD, UNC 2006 + E. Burns et al., "The Hand Is More Easily Fooled Than the Eye: Users Are More Sensitive to Visual Interpenetration than to Visual-ProprioceptiveDiscrepancy," Presence vol. 15, 2006, pp. 1–15

[B 2007] Eric Burns, Sharif Razzaque, Mary C. Whitton and Frederick P. Brooks1, MACBETH: Management of Avatar Conflict by Employment of a Technique Hybrid, The International Journal of Virtual Reality, 2007, 6(2):11-20

[D2020] T. Delrieu, V. Weistroffer, J. P. Gazeau, Precise and Realistic Grasping and Manipulation in Virtual Reality Without force Feedback, proc. of IEEEVR 2020, pp 266-274, Atlanta, USA

[H2000] Ho, Basdogan, Srinivasan, Ray-based haptic rendering, Int. Journal of Robotic research, 19(7), july 2000, pp 668-683

[H2018] R. Hinchet, V. Vechev, H. Shea, O. Hilliges, DextrES: Wearable Haptic Feedback for Grasping in VR via a Thin Form-Factor Electrostatic Brake, 901-912, Proc. of ACM UIST 2018, Berlin

[L 2006] Haptic Rendering, Eds M. Lin And M. Otadui, A. K. Peters

[M 1996] William R. Mark, Scott C. Randolph, Mark Finch, James M. Van Verth, and Russell M. Taylor, II. 1996. Adding force feedback to graphics systems: issues and solutions. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (SIGGRAPH '96).

[N 2009] M. NAUD, D. CHAMARET, L. HAMON, S. ULLAH, E. RICHARD, P. RICHARD, Human-Scale Haptic Interaction using the SPIDAR, Joint Virtual Reality Conference (JVRC09) – Lyon

[W 2004] Walairacht, S., Yamada, K., Hasegawa, S., Koike, Y. and Sato, M. (2004), Two-handed multiple-finger virtual object manipulation environment with haptic cues. Electronics and Communications in Japan (Part II: Electronics), 87: 65–73. doi: 10.1002/ecjb.20117

[Z 1995] C. B. Zilles and J K Salisbury "A constraint-based god-object method for haptic display", IROS '95, Volume 3 August 1995