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Modeling overview

Want to capture important features of the relationship
between a (set of) variable(s) and one or more response(s)

Many models are of the form

g(Y ) = f (x) + error

Differences in the form of g , f and distributional assumptions
about the error term
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Examples of models

Linear : Y = β0 + β1x + ε

Linear : Y = β0 + β1x + β2x
2 + ε

(Intrinsically) Nonlinear : Y = αxβ1 x
γ
2 x

δ
3 + ε

Logistic regression model :

log
p

1− p
= β0 + β1x + β2x2

Proportional Hazards (in Survival Analysis) :

h(t) = h0(t) exp(βx)
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Some background

In logistic regression, interested in studying how risk factors
are associated with presence or absence of disease (or other
condition)

Sometimes interested in how a risk factor or treatment affects
time to disease (or some other event)

If some study subjects drop out, then we may not know if
they had the disease

→ Cannot model this situation using logistic regression
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Survival data

In many studies, an outcome of interest is the time to an
event time to an event

The event may be

– adverse (e.g. death, tumor recurrence)
– positive (e.g. leave from hospital)
– neutral (e.g. use of birth control pills)

Time to event data is usually referred to as survival data –
even if the event of interest has nothing to do with ‘staying
alive’

In engineering, often called reliability data or failure data
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Response variable in survival analysis

In survival analysis, the response is a time

The response time T ≥ 0

Usually continuous (but measured discretely)

One special characteristic of survival data is the presence of
censoring – that is, incomplete responses

For example, for some individuals we may know that their
survival time was at least equal to some time t, but not know
the exact time
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Analysis of survival data

If no censoring, could use standard regression procedures

However, these may be inadequate :

– survival time is non-negative and its distribution is
generally skewed

– probability of surviving past a given time typically of
more interest than the expected time of event

– The hazard function, used for regression in survival
analysis, can provide more insight into the failure
mechanism than linear regression

3 types of analyses :

– non-parametric
– semi-paramentric (proportional hazards)
– (fully) parametric
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Censoring

For some units the event of interest has occurred and
therefore we know the exact waiting time, but for others it has
not occurred, and all we know is that the waiting time exceeds
the observation time

This is called censoring

For the survival analysis methods to be valid, the censoring
mechanism must be independent of the survival mechanism

Why censoring might occur :

1 A subject does not experience the event before the study ends
2 A person is lost to follow-up during the study period
3 A person withdraws from the study

These are all examples of right-censoring
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Right censoring

Fixed type I censoring : sample of n units is followed for a
fixed time τ : the number of units experiencing the event
(number of ‘deaths’) is random, but the total duration of the
study is fixed

Type II censoring :, a sample of n units is followed as long
as necessary until d units (the number d is fixed in advance)
have experienced the event

More generally, for random censoring, each unit has
associated with it a potential censoring time Ci and a
potential lifetime Ti , assumed to be independent random
variables – observe Yi = min(Ci ,Ti ) and an indicator variable
δi indicating whether observation i is terminated by death or
by censoring

For all of these schemes, the censoring mechanism is
non-informative and they all lead to essentially the same
likelihood function
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Censoring

10 / 40



Terminology and notation

T is the response variable, T ≥ 0

Ti denotes the response for the ith subject

Ci denotes the censoring time for the ith subject

δi denotes the event indicator for subject i :

δi =

{
1 if the event was observed (Ti ≤ Ci )

0 if the event was censored (Ti > Ci )

Yi = min(Ti ,Ci )
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Example

12 / 40



Survival function

The survival function is given by :

S(t) = Pr(T > t) = 1− F (t),

where F (t) is the cumulative distribution function for T

Example :
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Survival function properties

As t ranges from 0 to ∞, the survival function has the
following properties :

– It is non-increasing
– At time t = 0, S(t) = 1 (the probability of surviving

past time 0 is 1)
– At time t →∞, S(t) = S(∞) = 0 (as time goes to

infinity, the survival curve goes to 0 → no ‘eternal life’)

In theory, the survival function is smooth but in practice, we
observe events on a discrete time scale (days, weeks, etc.)
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Estimating the survival function : no censoring
(non-parametric)

We want to estimate S(t), assuming that every subject
follows the same survival function (no covariates or other
individual differences)

The survival function gives the probability that a subject will
survive past time t

In the case of no censoring, we can use a simple
non-parametric estimator of the survival function :

Ŝ(t) =
number of individuals with survival times ≥ t

n

This is just the (empirical) observed proportion of individuals
surviving for at least t
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Estimating the survival function : censoring

In the presence of censoring, we cannot use this simple
procedure

In this case, typically estimate the survival function using the
Kaplan-Meier estimator

First, order the survival times from smallest to largest :
t(1) ≤ t(2) ≤ · · · ≤ t(n), where t(j) is the jth largest unique
survival time

Kaplan-Meier estimate : Ŝ(t) =
∏

j :t(j)≤t

(
1−

dj
rj

)
, where rj is

the number of individuals at risk just before t(j) (including
censored individuals at t(j)), and dj is the number of
individuals experiencing the event at time t(j)
For example, the survival function at the second death time
t(2) is the estimated probability of not dying at t(2),
conditional on the individual still being at risk at time t(2)
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More on the Kaplan-Meier estimator

Also called the product limit estimator

Typically shown graphically sometimes with confidence bands

Has the form of a ‘down staircase’

When there is no censoring, the Kaplan-Meier curve is
equivalent to the empirical distribution

Can test for differences between curves (groups) using the
log-rank test (below)
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Variance of Ŝ(t)

In order to make confidence intervals for the survival function,
we need to estimate the variance of Ŝ(t)

In the case of no censoring, Ŝ(t) is a simple proportion, so

Var(Ŝ(t)) =
Ŝ(t)(1− Ŝ(t))

n

For the Kaplan-Meier estimate of Ŝ(t), the variance is more
difficult to derive, but it turns out to be

Var(Ŝ(t)) =
(
Ŝ(t)

)2 ∑
j :t(j)≤t

dj
rj (rj − dj)
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log-rank test

We can carry out a formal hypothesis test of equality of
survival curves for two groups using the log-rank test :

– Compute expected number of deaths for each unique
death time in the data, assuming that the chance of
dying for subjects at risk is the same for each group

– Total number of expected deaths for each group is the
sum of the expected numbers for each time

– The test compares the observed number of deaths in
each group to the expected number using a χ2 test

(more on χ2 tests after the break)
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Example
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Hazard function

Often want to assess which time periods have high or low
chances of failure, among those still at risk at the time

We can characterize these risks using the instantaneous failure
rate, or hazard function h(t)

h(t) is the probability that an individual experiences the event
in a small time interval s, given that the individual has
survived up to the beginning of the interval, when the size of
the time interval approaches 0 :

h(t) = lim
s→0

P(t ≤ T ≤ t + s | T ≥ t)

s
,

where T is the individual’s survival time
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Hazard function examples
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Relations between functions

The hazard function and survivor function are related as
follows :

S(t) = exp (−H(t)),

where H(t) is the integrated hazard or cumulative hazard
function, defined as :

H(t) =

∫ t

0
h(u) du

Therefore, H(t) = − log S(t)

h(t) = f (t)/S(t), where f (t) is the density function for T
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Estimating h, H

We can estimate the hazard function as the proportin of
individuals experiencing the event in an interval per unit time,
given that they have survived to the beginning of the interval :

ĥ(t) =
dj

nj(t(j+1) − t(j))

To estimate the integrated hazard function :

Ĥ(t) =
∑
j

dj
nj

24 / 40



Parametric estimation of S , H

The estimators above for S(t) and H(t) are non-parametric –
that is, we do not make any assumptions about the
distributional form for the survival time T

We could instead make parametric assumptions regarding the
form for the distribution of T

Some common parametric models for survival data :

– exponential
– Weibull
– gamma
– log-normal

Assuming that the parametric model is correct, we can
estimate S(t) more precisely

Estimation of parameters is by maximum likelihood
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Cox regression (semi-parametric)

Need special regression techniques to deal with (possibly)
censored survival data

Most commonly used procedure is the Cox proportional
hazards model or Cox regression

In this case, model the hazard function

Cox modeling is carried out in a similar manner to regression
modeling, but with linearity assumed on the log hazard scale

The Cox proportional hazards model can be written as :

h(t) = h0(t) exp (β1x1 + β2x2 + · · ·+ βkxk),

where h0 is the baseline hazard function, i.e., the hazard
function for individuals with all explanatory variables = 0

This model forces the hazard ratio between two individuals to
be constant over time
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Model components and interpretation

In the Cox model, h0(t) describes the common shape of the
survival time distribution for all individuals

The relative risk function exp(β′x) gives the level of each
individual’s hazard

Model parameters typically estimated using partial likelihood,
which takes care of the issue that the nuisance parameter h0
is left unspecified

Interpretation of parameter βj : exp(βj) gives the relative risk
change (hazard ratio) associated with an increase of one unit
in covariate xj , all other explantory variables remaining
constant

– HR = 1 : No effect
– HR > 1 : Increase in hazard
– HR < 1 : Reduction in hazard (protective)
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Survival analysis in R

R package survival

A survival object is made with the function Surv()

What you have to tell Surv :

– time : observed survival time
– event : indicator saying whether the event occurred

(event=TRUE) or is censored (event=FALSE)

Analyze with Kaplan-Meier curve : survfit

log-rank test : survdiff

Cox proportional hazards model : coxph

Annotated example : http://www.sthda.com/english/
wiki/cox-proportional-hazards-model
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Cox PH model (again)

The Cox (PH) model : λ(t | X(t)) = λ0(t)exp{β′X(t)}
Assumptions of this model :

1 the regression effect β is constant over time (PH assumption)
2 linear combination of the covariates (including possibly higher

order terms, interactions)
3 the link function is exponential

The PH assumption (1) has received most attention in both
research and application
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Cox PH model assessment

Typically examine different kinds of residuals, but not
straightforward to define residuals for binary outcomes (death
or not)

Possibilities include

1 Generalized (Cox-Snell)
2 Schoenfeld (or weighted Schoenfeld)
3 Martingale
4 Deviance

Generalized residual procedure not very sensitive for checking
the Cox model
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Schoenfeld residuals

Instead of a single residual for each individual, there is a
separate residual for each individual for each covariate

These represent the difference between the observed covariate
and the expected, given the risk set at that time

Calculated for each covariate

Not defined for censored failure times

Sum of the Schoenfeld residuals = 0

asymptotically uncorrelated with expectation zero under the
Cox model

⇒ plot of rij versus Xi should be centered around 0

non-PH could be revealed in such a plot

Weighted Schoenfeld residuals : weighted by the
variance-covariance matrix

Might be more Normally distributed for binary variables
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Schoenfeld residuals in R

Say you have a dataset foo

R commands :

cox ← coxph(Surv(days,1-censor) ∼ trmt,foo)
residuals(cox)
residuals(cox,type=”scaledsch”)
print(cox.zph(cox))
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Martingale residuals

The martingale residual for an observation is defined as :
m̂i = di − êi

That is, the discrepancy between the observed value of a
subject’s failure indicator and its expected value, integrated
over the time for which that patient was at risk

Positive values mean that the patient died sooner than
expected (according to the model) ; negative values mean that
the patient lived longer than expected (or were censored)

In R, you can get the martingale residuals from the survival

package by calling residuals(fit), where fit is a fitted
coxph model (resid(fit) also works as a shortcut)

Several residual options, martingale residuals are returned by
default
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Example

The large outlier is a patient with stage 4 cirrhosis and a bilirubin
concentration of 14.4 (96th percentile), yet survived 7 years
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Comments on martingale residuals

Martingale residuals are very useful and can be used for many
of the usual purposes that we use residuals for in other models
(identifying outliers, choosing a functional form for the
covariate, etc.)

However, the primary drawback to the martingale residual is
its clear asymmetry (its upper bound is 1, but it has no lower
bound)
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Deviance residuals
A technique for creating symmetric, normalized residuals that
is widely used in generalized linear modeling is to construct a
deviance residual
The idea behind the deviance residual is to examine the
difference between the log-likelihood (`i ) for subject i under a
given model and the maximum possible log-likelihood for that
subject (˜̀

i )
As it is essentially a likelihood ratio test, the quantity
2(˜̀

i − `i ) should approximately follow a χ2
1 distribution

The deviance is then defined as : d̂i = sign(m̂i )
√

2(˜̀
i − `i )

Can be used to look for outliers, or plot them against
covariates to assess the relationship between a covariate and
unexplained variation
Can also assess whether the relationship between the predictor
and the (log) hazard is linear
In R : residuals(fit, type="deviance")
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Example

The deviance residuals are much more symmetric
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Assessing the PH assumption

• Graphical :

Plots of survival estimates for two subgroups ; (Indications of
non-PH : estimated survival curves are fairly separated, then
converge or cross)

Plots of log[− log(Ŝ(t))] for two subgroups ; (if unparallel,
non-PH

Plots of (weighted, cumulative) Schoenfeld residuals vs time ;
(without cumulating : increase or decrease over time, may fit
a OLS regression line to see the trend)

Could plot observed survival probabilities (estimated using
KM) versus expected under PH model, but survival curves
tend not to be sensitive

• Formal Goodness-of-fit tests
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What can we do if PH fails ?

Transformations of the covariates

Add in higher order terms, interactions between covariates

Carry out a stratified analysis

Fit a time-varying coefficients model

Try other models
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R examples

https://www.r-bloggers.com/cox-model-assumptions/

http://www.sthda.com/english/wiki/

cox-model-assumptions

https://stat.ethz.ch/R-manual/R-devel/library/

survival/html/residuals.coxph.html

https://stat.ethz.ch/R-manual/R-devel/library/

survival/html/plot.cox.zph.html
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