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Variables : categorical and discrete data

Goodness-of-fit

Contingency tables

Visualizing categorical data : mosaic plot

Tests of independence, homogeneity

(Cochran-) Mantel-Haenzel test

Example : UC Berkeley Admisssions data (Simpson’s paradox)
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Variables

Statisticians call characteristics which can differ across
individuals variables

Types of variables :

Numerical

∎ Discrete – possible values can differ only by fixed
amounts (most commonly counting values)

∎ Continuous – can take on any value within a range (e.g.
any positive value)

Categorical

∎ Nominal – the categories have names, but no ordering
(e.g. eye color)

∎ Ordinal – categories have an ordering (e.g. ‘Always’,
‘Sometimes’, ‘Never’)

2 / 54



Categorical data analysis

A categorical variable can be considered as a classification of
observations

Nonparametric, randomization-based methods

Single classification

∎ goodness-of-fit

Multiple classifications

∎ contingency table
∎ homogeneity of proportions
∎ independence

Model-based analysis : more flexible, useful for estimation
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Mendel and peas

Mendel’s experiments with peas suggested to him that seed
color (as well as other traits he examined) was caused by two
different ‘gene alleles’ (he didn’t use this terminology back
then !)

Each (non-sex) cell had two alleles, and these determined seed
color :
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Peas, cont.

Here, yellow is dominant over green

Sex cells each carry one allele

Also postulated that the gene pair of a new seed determined
by combination of pollen and ovule, which are passed on
independently
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Did Mendel’s data support the theory ?

We know today that he was right, but how good was his
experimental proof ?

→ How can we measure how well data fit a prediction ? ?

Want to test for goodness-of-fit of observed data to a
theoretical distribution
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Testing for goodness-of-fit

The NULL is that the data were generated according to a
particular chance model

The model should be fully specified (including parameter
values) ; if parameter values are not specified, they may be
estimated from the data

Test statistic : X 2 =
k

∑
i=1

(observedi − expectedi)2
expectedi

Under the NULL, X 2 ∼ χ2
k−1, where k is the number of

categories
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Example

A manager takes a random sample of 100 sick days and finds :

∎ 26 of the sick days were taken by the 20-29 age group
∎ 37 by 30-39
∎ 24 by 40-49
∎ 13 by 50 and over

These groups make up 30%, 40%, 20%, and 10% of the labor
force at the company

Test the hypothesis that age is not a factor in taking sick days
...
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Example, cont.
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Continuous example : uniform distribution

Consider a RV X taking values between 0 and 1, but whose
density is unknown

In addition, suppose that there is a sample of size 100 of
observations from this distribution and that we would like to
test whether the observations are compatible with a uniform
distribution

We could divide the interval (0,1) into 20 sub-intervals
(0,0.05), (0.05,0.10), etc.

If the distribution is uniform, then the probability that any
particular observation is in sub-interval i is pi = 1/20,
i = 1, . . . ,20

So the expected number in each sub-interval is npi = 100/20
= 5

Then we can compute the statistic X 2 as above
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Goodness-of-fit for continuous distributions

We can use this same method for any continuous distribution

Choice of k is somewhat arbitrary : in general, choose k and
the sub-intervals such that the expected numbers are
approximately equal and not too small

1 Partition the support of the distribution (finite or infinite) into
k disjoint sub-intervals

2 Determine the probability p0i supposing a specific distribution
(H), and thus the expected values (npi )

3 Obtain Ni , the number of observations in sub-interval i

4 Calculate X 2
obs

5 Sous H X 2
obs ∼ χ2

k−1
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Testing composite hypotheses

We have been considering simple null hypotheses : that is,
the distribution is completely specified by the hypothesis

For example H : p = 0.1 for a binomial proportion is a simple
hypothesis

In this case, it is not necessary to estimate any parameters,
and the statistic X 2

obs ∼ χ2
k−1 under H

However, it could happen that we are interested in null
hypotheses containing multiple possible values for the
parameter(s)

This type of hypothesis is a composite hypothesis
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Test statistic for composite hypotheses

For a composite null hypothesis, we must modify the test
statistic X 2

obs , since the expected number in class i is no
longer completely specified by the null hypothesis H

Modification : replace npi by its MLE np̂i in calculating X 2
obs

Under H, this X 2
obs ∼ χ2

k−p−1, where p is the number of
estimated parameters in calculating p̂i
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Example : parameter estimation

200 (independent) indivuduals are asked how many lottery
tickets they bought last week

Results :

# billets 0 1 2 3 4 5 6 7 8 9 10 ≥ 11

# personnes 52 60 55 18 8 3 2 1 0 0 1 0

Test the hypothesis that these observations follow a Poisson
distribution...
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Contingency table

A contingency table is a specific way to simultaneously
represent 2 (or more) characteristics on a population (or
sample)

The representation consists of the frequencies of values for
each couple of variables (X , Y ) with modalities xi = 1, . . . , r ,
yj = 1, . . . , c

r = number of rows, c = number of columns

Example :

∎ Hair color = blond, red, brown, black
∎ Eye color = brown, green, blue

The values in the table represent the number of observations
for each combination of possible values for the pair (‘cell’)

The sums of values for a row or a column are the marginal
totals
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Example, cont.
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Special case : 2 × 2 table

2 variables, each with 2 levels

Measures of association

∎ Odds ratio (cross-product) :
ad

bc

∎ Relative risk :
a/(a + b)
c/(c + d)

+ -

group 1 a (n11) b (n12) n1.
group 2 c (n21) d (n22) n2.

n.1 n.2 n.. = n
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Visualizing categorical/discrete data

Exploratory methods

∎ Minimal assumptions (like non-parametric methods)
∎ Show the data, not just summaries
∎ Help detect patterns, trends, anomalies, suggest

hypotheses

Plots for model-based methods

∎ Residual plots – departures from model, omitted terms,
etc.

∎ Effect plots – estimated probabilities of response or log
odds

∎ Diagnostic plots – influence, violation of assumptions

R packages vcd, vcdExtra : visualizing categorical data
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Mosaic plots

Mosaic plots give a graphical representation of successive
decompositions of a multi-way contingency table

Counts are represented by rectangles

At each stage of plot creation, the rectangles are split parallel
to one of the two axes

Even though there are rectangles, the important visual aspect
is the length (we are comparing lengths, NOT areas)

To make mosaic plot, need :

∎ A contingency table containing the data
∎ A preferred ordering of the variables, with the ‘response’

variable last
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Example : classical music listening
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Example : classical music listening data entry in R
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Example, contd : looking at data in R
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Example : classical music listening
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Example : classical music listening
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Example : classical music listening
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Example : classical music listening
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BREAK
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Test of independence : intuition

Construct bivariate table as it would look under the NULL,
i.e. if there were no association

Compare the real, observed table to this hypothetical one

Measure how different these two tables are

If there are sufficiently large differences, we conclude that
there is a significant relationship (i.e. a significant deviation
from independence)

Otherwise, we conclude that our numbers vary just due to
chance
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Test of independence

2 characteristics are independent if the value of one does not
influence the distribution of values of the other

Ô⇒ joint frequencies should be (close to) the products of
the marginal frequencies

Under the hypothesis that X and Y are indeependent, the
joint probabilities are :

pij = P(X = xi and Y = yj) = P(X = xi) × P(Y = yj)
Based on the contingency table, the 2 marginal probabilities
are estimated by :

P(X = xi) =
∑c

j=1 nij
∑r

i=1∑c
j=1 nij

= ni ⋅
n⋅⋅

= ni ⋅
n

P(Y = yj) = ∑r
i=1 nij

∑r
i=1∑c

j=1 nij
= n⋅j
n⋅⋅

= n⋅j
n
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Test of independence, cont.

We thus obtain p̂ij = ni ⋅n⋅j/n2

(n = n⋅⋅ =
r

∑
i=1

c

∑
j=1

nij , the total sample size)

Ô⇒ Under the null hypothesis of independence of row and
column characters, the expected numbers in each cell (i , j)
are :

n × P(X = xi) × P(Y = yj) =
∑c

j=1 nij ×∑r
i=1 nij

n
= ni ⋅ n⋅j

n
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Test statistic

The test statistic is still of the form :

X 2
obs =

r

∑
i=1

c

∑
j=1

(observedij − expectedij)2
expectedij

= (n11 − n1⋅n⋅1/n)2
n1⋅n⋅1/n + (n12 − n1⋅n⋅2/n)2

n1⋅n⋅2/n +⋯ + (nrc − nr ⋅n⋅c/n)2
nr ⋅n⋅c/n

For n ‘sufficiently large’ (∀i , j , npij ≥ 5), under H

X 2
obs ∼ χ2

(r−1)×(c−1)
So for a 2 × 2 table, there is 1 df
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Example

The following table contains results of a survey to consider the
link between sex and handedness left-handed or right-handed :

men women

right-handed 2780 3281 6061
left-handed 311 300 611

3091 3581 6672

Test at level α = 0.05 the hypothesis that ‘sexe’ et
‘handedness’ are independent ...
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Solution

Theoretical table :
men women

right-handed 2808 3253 6061
left-handed 283 328 611

3091 3581 6672

2808 = 6061 × 3091/6672, etc.

X 2 = (2780 − 2808)2
2808

+(3281 − 3253)2
3253

+(311 − 283)2
283

+(300 − 328)2
328

= 5.68

Under H, X 2 ∼ χ2
1 ; χ2

1,0.95 = 3.84 < 5.68.

Thus, we REJECT the null hypothesis : the data indicate a
significant deviation from the hypothesis of independence
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Test of homogeneity

The test of homogeneity consists of verifying that J samples
(groups) come from the same population/distribution

That is, the distribution of the variable of interest is the same
in all the populations

This test is a comparison of the distribution of a qualitative
variable in multiple samples

Consider a factor A that can take I different values in the
population

The probability for each different value of A is pi ⋅, i = 1, . . . , I

Let J samples Cj of sizes n⋅j , respectively, be taken from the
population
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Test of homogeneity, cont.

The observed frequencies of the values Ai for factor A in
sample Cj are noted nij

The null hypothesis H states that the distributions are the
same

Ô⇒ the observed differences between all the samples are due
to sampling variability (random variation)

Modality C1 C2 ⋯ CJ Total
of factor

A1 n11 n12 ⋯ n1J n1⋅
A2 n21 n22 ⋯ n2J n2⋅
⋮
AI nI1 nI2 ⋯ nIJ nI ⋅

n⋅1 n⋅2 n⋅J n⋅⋅ = n

35 / 54



Test statistic

Under H, the probabilities for the different factor modalities
have equal marginal distributions

Probability for modality i for factor A :

pi ⋅ = ni ⋅/n
Expected number for modality i in sample j :

Eij = n⋅j pi ⋅ = ni ⋅ n⋅j
n

Test statistic (homogeneity) is still of the form :

X 2
obs = ∑

(observed − expected)2
expected

=
I

∑
i=1

J

∑
j=1

(nij − ni ⋅n⋅j/n)2
ni ⋅n⋅j/n

Note : c’est the same formula as for the test of independence

Under H, X 2 ∼ χ2
(I−1)(J−1)
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Small sample size : Fisher’s exact test

The χ2 distribution for the X 2 statistic applies for ‘sufficiently
large’ sample sizes (expected value ≥ 5 in each cell)

Fisher’s exact test is a method of testing for independence
when some expected values are small

Measures the chances we would see differences of this
magnitude or larger if there were no association

The test is conditional on both margins – both the row and
column totals are considered to be fixed

37 / 54



A lady tasting tea

Exact test developed for the following setup :

A lady claims to be able to tell whether the tea or the milk is
poured first

8 cups, 4 of which are tea first and 4 are milk first, and the
lady knows this

Thus, the margins are known in advance

Want to assess the chance of observing a result (table) as or
more extreme (i.e., the p-value)
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More about Fisher’s exact test

Fisher’s exact test computes the probability, given the
observed marginal frequencies, of obtaining exactly the
frequencies observed and any configuration more extreme

‘More extreme’ means any table configuration with a smaller
probability of occurrence in the same direction (one-tailed) or
in both directions (two-tailed)
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Example
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Cochran-Mantel-Haenzel test

The Cochran-Mantel-Haenszel test is a technique that can be
used to test for and/or generate an estimate of an association
between an exposure and an outcome after adjusting for or
taking into account confounding

Used with a dichotomous outcome variable and a
dichotomous risk factor, stratified by levels of the confounding
factor (multiple 2 × 2 tables)

Estimated odds ratio (or relative risk) is a weighted average
across strata (subgroups/levels of the confounder)

Important assumption : no 3-way interaction

More on this next week
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Example : Discrimination in admissions ?

In the 1980s, a court case brought against the University of
California at Berkeley by women seeking admission to
graduate programs

The women claimed that the proportion of women admitted
to Berkeley was much lower than that for men, and that this
was the result of discimination

The data :

We see that a larger proportion of males is being admitted
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Example : mosaic plot
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Example : mosaic plot

The widths of the boxes are proportional to the percentage of
females and males, respectively

Here, 41% of applicants were female and 59% male

The heights of the boxes are proportional to percent admitted

In fact, 45% of the male applicants were admitted, while only
30% of the female applicants were admitted

Boxes for those admitted are colored blue while those not
admitted are colored pink

It is easy to see that females’ blue box on the left is much
shorter than the males’ blue box on the right

This seems to show a large gender-bias in admission

However, this inference does not take department into account
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Example : mosaic plot by department
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Example : mosaic plot including department

Departments shown across the bottom

Percentage of applicants to each department proportional to
the width of the bars

We see that departments A and C have the largest number of
applicants and departments B and E have the smallest

Percent admitted within each gender-by-department
combination is width of the corresponding box

For example, the percentage of females that were admitted to
department A (shown by the width of blue box at the lower
left) is much larger than that of the males (shown by the
width of the long blue box directly above the female box)

Considering each department in turn by scanning from left to
right across the plot, the width of the blue box on the bottom
appears to be quite similar to the box directly above it

This indicates that in most departments the percent of
females admitted is about the same as that of males admitted
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Example : mosaic plot by department
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Simpson’s paradox

The tendency of men and women to seek entry to different
departments is noticeable

The research paper by Bickel et al. concluded that women
tended to apply to competitive departments with low rates of
admission even among qualified applicants (such as in the
English Department), whereas men tended to apply to
less-competitive departments with high rates of admission
among the qualified applicants (such as in engineering and
chemistry)

This is an example of Simpson’s paradox, or a spurious
correlation, where a trend appears in several different
groups/strata of data but disappears or reverses when these
groups are combined
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Example : doubledecker plot
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Example : CMH test
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Example : Woolf test for 3-way interaction
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Example : fourfold plot
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